IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34447-7.html
   My bibliography  Save this article

Electricity consumption variation versus economic structure during COVID-19 on metropolitan statistical areas in the US

Author

Listed:
  • Jinning Wang

    (The University of Tennessee)

  • Fangxing Li

    (The University of Tennessee)

  • Hantao Cui

    (The University of Tennessee)

  • Qingxin Shi

    (The University of Tennessee)

  • Trey Mingee

    (The University of Tennessee)

Abstract

The outbreak of novel coronavirus disease (COVID-19) has resulted in changes in productivity and daily life patterns, and as a result electricity consumption (EC) has also shifted. In this paper, we construct estimates of EC changes at the metropolitan level across the continental U.S., including total EC and residential EC during the initial two months of the pandemic. The total and residential data on the state level were broken down into the county level, and then metropolitan level EC estimates were aggregated from the counties included in each metropolitan statistical area (MSA). This work shows that the reduction in total EC is related to the shares of certain industries in an MSA, whereas regardless of the incidence level or economic structure, the residential sector shows a trend of increasing EC across the continental U.S. Since the MSAs account for 86% of the total population and 87% of the total EC of the continental U.S., the analytical result in this paper can provide important guidelines for future social-economic crises.

Suggested Citation

  • Jinning Wang & Fangxing Li & Hantao Cui & Qingxin Shi & Trey Mingee, 2022. "Electricity consumption variation versus economic structure during COVID-19 on metropolitan statistical areas in the US," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34447-7
    DOI: 10.1038/s41467-022-34447-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34447-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34447-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Filipović, Sanja & Verbič, Miroslav & Radovanović, Mirjana, 2015. "Determinants of energy intensity in the European Union: A panel data analysis," Energy, Elsevier, vol. 92(P3), pages 547-555.
    2. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra, 2017. "Forecasting electricity demand for Turkey: Modeling periodic variations and demand segregation," Applied Energy, Elsevier, vol. 193(C), pages 287-296.
    3. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
    4. Sarwar, Suleman & Chen, Wei & Waheed, Rida, 2017. "Electricity consumption, oil price and economic growth: Global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 9-18.
    5. Arora, Vipin & Lieskovsky, Jozef, 2016. "Electricity Use as an Indicator of U.S. Economic Activity," EconStor Research Reports 126147, ZBW - Leibniz Information Centre for Economics.
    6. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    7. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    8. Apergis, Nicholas & Payne, James E., 2011. "A dynamic panel study of economic development and the electricity consumption-growth nexus," Energy Economics, Elsevier, vol. 33(5), pages 770-781, September.
    9. Zhu Liu & Philippe Ciais & Zhu Deng & Ruixue Lei & Steven J. Davis & Sha Feng & Bo Zheng & Duo Cui & Xinyu Dou & Biqing Zhu & Rui Guo & Piyu Ke & Taochun Sun & Chenxi Lu & Pan He & Yuan Wang & Xu Yue , 2020. "Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. An, Hui & Xu, Jianjun & Ma, Xuejiao, 2020. "Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 206-220.
    11. Ferguson, Ross & Wilkinson, William & Hill, Robert, 2000. "Electricity use and economic development," Energy Policy, Elsevier, vol. 28(13), pages 923-934, November.
    12. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    13. Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
    14. Al-Bajjali, Saif Kayed & Shamayleh, Adel Yacoub, 2018. "Estimating the determinants of electricity consumption in Jordan," Energy, Elsevier, vol. 147(C), pages 1311-1320.
    15. Shahbaz, Muhammad & Sarwar, Suleman & Chen, Wei & Malik, Muhammad Nasir, 2017. "Dynamics of electricity consumption, oil price and economic growth: Global perspective," Energy Policy, Elsevier, vol. 108(C), pages 256-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Nicolae-Marius Jula & Diana-Mihaela Jula & Bogdan Oancea & Răzvan-Mihail Papuc & Dorin Jula, 2023. "Changes in the Pattern of Weekdays Electricity Real Consumption during the COVID-19 Crisis," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Sarwar, Suleman & Chen, Wei & Malik, Muhammad Nasir, 2017. "Dynamics of electricity consumption, oil price and economic growth: Global perspective," Energy Policy, Elsevier, vol. 108(C), pages 256-270.
    2. Fang, Debin & Hao, Peng & Yu, Qian & Wang, Jiancheng, 2020. "The impacts of electricity consumption in China's key economic regions," Applied Energy, Elsevier, vol. 267(C).
    3. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    4. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    5. Pandelara, Diego & Kristjanpoller, Werner & Michell, Kevin & Minutolo, Marcel C., 2022. "A fuzzy regression causality approach to analyze relationship between electrical consumption and GDP," Energy, Elsevier, vol. 239(PE).
    6. Sarwar, Suleman, 2022. "Impact of energy intensity, green economy and blue economy to achieve sustainable economic growth in GCC countries: Does Saudi Vision 2030 matters to GCC countries," Renewable Energy, Elsevier, vol. 191(C), pages 30-46.
    7. Shi, Changfeng & Zhao, Yi & Zhang, Chenjun & Pang, Qinghua & Chen, Qiyong & Li, Ang, 2022. "Research on the driving effect of production electricity consumption changes in the Yangtze River Economic Zone - Based on regional and industrial perspectives," Energy, Elsevier, vol. 238(PA).
    8. Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
    9. Huang, Liqing & Zhu, Bangzhu & Wang, Ping & Chevallier, Julien, 2022. "Energy out-of-poverty and inclusive growth: Evidence from the China health and nutrition survey," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 344-352.
    10. Cui, Wencong & Li, Jianyi & Xu, Wangtu & Güneralp, Burak, 2021. "Industrial electricity consumption and economic growth: A spatio-temporal analysis across prefecture-level cities in China from 1999 to 2014," Energy, Elsevier, vol. 222(C).
    11. Shahbaz, Muhammad & Benkraiem, Ramzi & Miloudi, Anthony & Lahiani, Amine, 2017. "Production function with electricity consumption and policy implications in Portugal," Energy Policy, Elsevier, vol. 110(C), pages 588-599.
    12. Chen Wang & Kaile Zhou & Lanlan Li & Shanlin Yang, 2018. "Multi-agent simulation-based residential electricity pricing schemes design and user selection decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1309-1327, February.
    13. Abbasi, Kashif Raza & Abbas, Jaffar & Tufail, Muhammad, 2021. "Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan," Energy Policy, Elsevier, vol. 149(C).
    14. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    15. Koščak Kolin, Sonja & Karasalihović Sedlar, Daria & Kurevija, Tomislav, 2021. "Relationship between electricity and economic growth for long-term periods: New possibilities for energy prediction," Energy, Elsevier, vol. 228(C).
    16. Oluwarotimi Ayokunnu Owolabi & Asa-Ruth Oboku Oku & Abidemi Alejo & Toun Ogunbiyi & Jeremiah Ifeanyi Ubah, 2021. "Access to Electricity, Information and Communications Technology (ICT), and Financial Development: Evidence From West Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 247-259.
    17. Sudati Nur Safiah & Rr. Retno Sugiharti & Rian Destiningsih & Putra Arif Budiman, 2021. "Dynamic Model for the Consumption of Electrical Energy in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 356-362.
    18. Li, Yi & Liu, Tianya & Xu, Jinpeng, 2023. "Analyzing the economic, social, and technological determinants of renewable and nonrenewable electricity production in China: Findings from time series models," Energy, Elsevier, vol. 282(C).
    19. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    20. Sohag, Kazi & Sokhanvar, Amin & Belyaeva, Zhanna & Mirnezami, Seyed Reza, 2022. "Hydrocarbon prices shocks, fiscal stability and consolidation: Evidence from Russian Federation," Resources Policy, Elsevier, vol. 76(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34447-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.