IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221013931.html
   My bibliography  Save this article

Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization

Author

Listed:
  • Niu, Dongxiao
  • Ji, Zhengsen
  • Li, Wanying
  • Xu, Xiaomin
  • Liu, Da

Abstract

Accurate forecast of mid-term power demand ensures the stable and efficient operation of power systems, and is essential for the construction of energy interconnections and renewable energy microgrids. However, the implementation of strategies aimed at reducing carbon emissions such as electric energy substitution increases the uncertainty of power demand. In order to effectively extract the changing characteristics of electricity demand, this paper firstly proposes a secondary decomposition model based on a seasonal-trend decomposition procedure based on Loess (STL) and variational mode decomposition (VMD) to reduce sequence complexity. Then, different models such as grey wolf optimized support vector regression (GWO-SVR) for different sequences were used to achieve the best prediction effect. In addition, this study used the Markov chain model to further improve the prediction accuracy based on interval optimization. To verify the effectiveness of the hybrid model, a case study was conducted on the monthly electricity consumption in Zhejiang Province, China. The results show that the proposed model effectively extracts the characteristics of changes in electricity demand and greatly improves the forecast accuracy.

Suggested Citation

  • Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221013931
    DOI: 10.1016/j.energy.2021.121145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    2. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    3. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    4. He, Yongxiu & Jiao, Jie & Chen, Qian & Ge, Sifan & Chang, Yan & Xu, Yang, 2017. "Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin," Energy, Elsevier, vol. 133(C), pages 9-22.
    5. Tongxiang Liu & Yu Jin & Yuyang Gao, 2019. "A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization," Energies, MDPI, vol. 12(8), pages 1-20, April.
    6. Kavaklioglu, Kadir, 2011. "Modeling and prediction of Turkey's electricity consumption using Support Vector Regression," Applied Energy, Elsevier, vol. 88(1), pages 368-375, January.
    7. Hernández, Luis & Baladrón, Carlos & Aguiar, Javier M. & Carro, Belén & Sánchez-Esguevillas, Antonio & Lloret, Jaime, 2014. "Artificial neural networks for short-term load forecasting in microgrids environment," Energy, Elsevier, vol. 75(C), pages 252-264.
    8. Wu, Zhuochun & Xia, Xiangjie & Xiao, Liye & Liu, Yilin, 2020. "Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 261(C).
    9. Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
    10. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
    11. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    12. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    13. Takeda, Hisashi & Tamura, Yoshiyasu & Sato, Seisho, 2016. "Using the ensemble Kalman filter for electricity load forecasting and analysis," Energy, Elsevier, vol. 104(C), pages 184-198.
    14. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    15. Ting-Chia Ou & Wei-Fu Su & Xian-Zong Liu & Shyh-Jier Huang & Te-Yu Tai, 2016. "A Modified Bird-Mating Optimization with Hill-Climbing for Connection Decisions of Transformers," Energies, MDPI, vol. 9(9), pages 1-12, August.
    16. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    17. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    18. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    19. Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
    20. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
    21. Guo-Feng Fan & Shan Qing & Hua Wang & Wei-Chiang Hong & Hong-Juan Li, 2013. "Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting," Energies, MDPI, vol. 6(4), pages 1-15, April.
    22. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    23. Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
    24. Chahkoutahi, Fatemeh & Khashei, Mehdi, 2017. "A seasonal direct optimal hybrid model of computational intelligence and soft computing techniques for electricity load forecasting," Energy, Elsevier, vol. 140(P1), pages 988-1004.
    25. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    26. Jiang, Ping & Liu, Feng & Song, Yiliao, 2017. "A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting," Energy, Elsevier, vol. 119(C), pages 694-709.
    27. Dietrich, Bastian & Walther, Jessica & Weigold, Matthias & Abele, Eberhard, 2020. "Machine learning based very short term load forecasting of machine tools," Applied Energy, Elsevier, vol. 276(C).
    28. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System," Energies, MDPI, vol. 10(10), pages 1-16, September.
    29. Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
    30. Wu, Jinran & Cui, Zhesen & Chen, Yanyan & Kong, Demeng & Wang, You-Gan, 2019. "A new hybrid model to predict the electrical load in five states of Australia," Energy, Elsevier, vol. 166(C), pages 598-609.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aoqi Xu & Man-Wen Tian & Behnam Firouzi & Khalid A. Alattas & Ardashir Mohammadzadeh & Ebrahim Ghaderpour, 2022. "A New Deep Learning Restricted Boltzmann Machine for Energy Consumption Forecasting," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    2. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Man, Yi, 2022. "Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction," Energy, Elsevier, vol. 244(PB).
    3. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    4. Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
    5. Zhang, Yituo & Li, Chaolin & Jiang, Yiqi & Zhao, Ruobin & Yan, Kefen & Wang, Wenhui, 2023. "A hybrid model combining mode decomposition and deep learning algorithms for detecting TP in urban sewer networks," Applied Energy, Elsevier, vol. 333(C).
    6. Zhoufan Chen & Congmin Wang & Longjin Lv & Liangzhong Fan & Shiting Wen & Zhengtao Xiang, 2023. "Research on Peak Load Prediction of Distribution Network Lines Based on Prophet-LSTM Model," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    7. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    8. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    9. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    10. Banteng Liu & Yangqing Xie & Ke Wang & Lizhe Yu & Ying Zhou & Xiaowen Lv, 2023. "Short-Term Multi-Step Wind Direction Prediction Based on OVMD Quadratic Decomposition and LSTM," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    11. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    12. Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
    13. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
    14. Qingqing Ji & Shiyu Zhang & Qiao Duan & Yuhan Gong & Yaowei Li & Xintong Xie & Jikang Bai & Chunli Huang & Xu Zhao, 2022. "Short- and Medium-Term Power Demand Forecasting with Multiple Factors Based on Multi-Model Fusion," Mathematics, MDPI, vol. 10(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    2. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    3. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    4. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    5. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    6. Zhineng Hu & Jing Ma & Liangwei Yang & Liming Yao & Meng Pang, 2019. "Monthly electricity demand forecasting using empirical mode decomposition-based state space model," Energy & Environment, , vol. 30(7), pages 1236-1254, November.
    7. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    8. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    9. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
    10. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
    11. Yi Yang & Zhihao Shang & Yao Chen & Yanhua Chen, 2020. "Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting," Energies, MDPI, vol. 13(3), pages 1-19, January.
    12. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    13. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    14. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    15. Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series," Energy, Elsevier, vol. 203(C).
    16. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    17. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    18. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    19. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
    20. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221013931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.