Review on dehumidification technology in low and extremely low humidity industrial environments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131793
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Si-Min & Zhang, Li-Zhi, 2013. "Researches and trends in membrane-based liquid desiccant air dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 425-440.
- De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
- Kanoğlu, Mehmet & Bolattürk, Ali & Altuntop, Necdet, 2007. "Effect of ambient conditions on the first and second law performance of an open desiccant cooling process," Renewable Energy, Elsevier, vol. 32(6), pages 931-946.
- Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
- Tu, Rang & Liu, Xiao-Hua & Jiang, Yi & Ma, Fei, 2015. "Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis," Energy, Elsevier, vol. 85(C), pages 379-391.
- Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
- Zhou, Xingchao & Goldsworthy, Mark & Sproul, Alistair, 2018. "Performance investigation of an internally cooled desiccant wheel," Applied Energy, Elsevier, vol. 224(C), pages 382-397.
- Sheng, Ying & Zhang, Yufeng & Zhang, Ge, 2015. "Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system," Energy, Elsevier, vol. 83(C), pages 583-596.
- Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
- Peng, Donggen & Luo, Danting & Cheng, Xiaosong, 2018. "Modeling and performance comparisons of the grading and single solar collector/ regenerator systems with heat recovery," Energy, Elsevier, vol. 144(C), pages 736-749.
- Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
- Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
- Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
- Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
- Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
- Al-Alili, Ali & Hwang, Yunho & Radermacher, Reinhard, 2015. "Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation," Energy, Elsevier, vol. 81(C), pages 137-145.
- Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
- Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
- Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
- Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
- Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
- Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
- Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
- Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
- Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
- Niu, Xiaofeng & Ke, Qing & Wang, Zhaohua & Zhou, Junming & Dong, Honglin & Mahian, Omid, 2023. "Study on the regeneration process and overall performance of a microencapsulated phase change material slurry dehumidification system," Renewable Energy, Elsevier, vol. 216(C).
- Chung, Jun Yeob & Park, Myeong Hyeon & Hong, Seong Ho & Baek, Jaehyun & Han, Changho & Lee, Sewon & Kang, Yong Tae & Kim, Yongchan, 2023. "Comparative performance evaluation of multi-objective optimized desiccant wheels coated with MIL-100 (Fe) and silica gel composite," Energy, Elsevier, vol. 283(C).
- Yin, Yonggao & Zheng, Baojun & Yang, Can & Zhang, Xiaosong, 2015. "A proposed compressed air drying method using pressurized liquid desiccant and experimental verification," Applied Energy, Elsevier, vol. 141(C), pages 80-89.
- Ge, Gaoming & Abdel-Salam, Mohamed R.H. & Besant, Robert W. & Simonson, Carey J., 2013. "Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 464-479.
- Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
- Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
- Zhang, Lun & Wei, Hongyang & Zhang, Xiaosong, 2017. "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory," Energy, Elsevier, vol. 141(C), pages 661-672.
- Park, Myeong Hyeon & Chung, Jun Yeob & Hong, Seong Ho & Shin, Hyun Ho & Lee, Dongchan & Kim, Yongchan, 2023. "Optimized geometric designs of desiccant wheels with metal-organic frameworks considering dehumidification capacity and energy," Energy, Elsevier, vol. 284(C).
- Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
More about this item
Keywords
Dehumidification; Low-humidity; Industrial environment; Review;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015664. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.