IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v161y2016icp497-511.html
   My bibliography  Save this article

Capturing the invisible resource: Analysis of waste heat potential in Chinese industry

Author

Listed:
  • Lu, Hongyou
  • Price, Lynn
  • Zhang, Qi

Abstract

Waste heat recovery and utilization represents a missed opportunity to reduce China’s total energy use, decrease carbon dioxide emissions, and improve air quality. Currently, China does not have a standardized or transparent methodology to quantify the waste heat potential in the industrial sector, which accounts for more than two thirds of China’s primary energy consumption. This paper presents the results of thermal energy modeling to quantify the technical maximum waste heat potential in three energy-intensive industrial sectors: cement, iron and steel, and glass. In addition, this paper identifies the practical potential for producing electricity from waste heat in these sectors. The analysis finds that the glass sector has the highest waste heat to power generation potential per unit of production basis among the studied sectors. This paper provides key principles for managing waste heat in the industrial sector and key sector characteristics for implementing waste heat to power generation technologies.

Suggested Citation

  • Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
  • Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:497-511
    DOI: 10.1016/j.apenergy.2015.10.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    2. Miró, Laia & Brückner, Sarah & Cabeza, Luisa F., 2015. "Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 847-855.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    2. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    3. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    4. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    5. Luo, Ao & Fang, Hao & Xia, Jianjun & Lin, Borong & jiang, Yi, 2017. "Mapping potentials of low-grade industrial waste heat in Northern China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 335-348.
    6. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    7. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    8. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    9. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    10. Pili, R. & García Martínez, L. & Wieland, C. & Spliethoff, H., 2020. "Techno-economic potential of waste heat recovery from German energy-intensive industry with Organic Rankine Cycle technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    12. Vojtěch Turek & Bohuslav Kilkovský & Ján Daxner & Dominika Babička Fialová & Zdeněk Jegla, 2024. "Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review," Energies, MDPI, vol. 17(9), pages 1-27, April.
    13. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    14. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Yang, Jing & Zhang, Zhiyong & Yang, Mingwan & Chen, Jiayu, 2019. "Optimal operation strategy of green supply chain based on waste heat recovery quality," Energy, Elsevier, vol. 183(C), pages 599-605.
    16. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    17. Jun Yang & Biao Li & Hui Sun & Jianxin Xu & Hua Wang, 2023. "Experimental Measurement and Theoretical Prediction of Bubble Growth and Convection Heat Transfer Coefficient in Direct Contact Heat Transfer," Energies, MDPI, vol. 16(3), pages 1-19, January.
    18. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    19. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    20. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:161:y:2016:i:c:p:497-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.