IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123009515.html
   My bibliography  Save this article

Study on the regeneration process and overall performance of a microencapsulated phase change material slurry dehumidification system

Author

Listed:
  • Niu, Xiaofeng
  • Ke, Qing
  • Wang, Zhaohua
  • Zhou, Junming
  • Dong, Honglin
  • Mahian, Omid

Abstract

Building on previous findings that showed the efficacy of microencapsulated phase change materials (MicroPCM) in augmenting liquid desiccant dehumidification performance, this study endeavors to further explore the extent of the impact of MicroPCM in the regeneration and the entire dehumidification system. The results of the regeneration experiment on the microencapsulated phase change material slurry (MPCMS) reveal that the addition of MicroPCM impedes regeneration. Specifically, as the concentration of MicroPCM increases, both the regeneration rate and the MPCMS concentration after regeneration decrease, while the regeneration effectiveness exhibits an initial decline followed by an increase. An empirical correlation was proposed to predict the regeneration rate of MPCMS for their future application. The results showed that the addition of MicroPCM led to a decrease in the regeneration rate by as much as 48.1%, when compared to a pure LiCl solution. However, a simulation analysis of the entire system revealed that within a certain concentration range of MicroPCM addition, the coefficient of performance (COP) of the system could still be increased by up to 4.28%. This finding suggests that if a more suitable non-heating regeneration method were used, the addition of MicroPCM could further enhance the overall performance of the liquid desiccant dehumidification system.

Suggested Citation

  • Niu, Xiaofeng & Ke, Qing & Wang, Zhaohua & Zhou, Junming & Dong, Honglin & Mahian, Omid, 2023. "Study on the regeneration process and overall performance of a microencapsulated phase change material slurry dehumidification system," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009515
    DOI: 10.1016/j.renene.2023.119037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    2. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    3. Yin, Yonggao & Zheng, Baojun & Yang, Can & Zhang, Xiaosong, 2015. "A proposed compressed air drying method using pressurized liquid desiccant and experimental verification," Applied Energy, Elsevier, vol. 141(C), pages 80-89.
    4. Li, Wei & Yao, Ye, 2021. "Performance analysis of different flow types of internally-cooled membrane-based liquid desiccant dehumidifiers," Energy, Elsevier, vol. 228(C).
    5. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    6. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    7. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Wu, Shenyi & Rincon Ortiz, Camilo, 2020. "Experimental investigation of the effect of magnetic field on vapour absorption with LiBr–H2O nanofluid," Energy, Elsevier, vol. 193(C).
    9. Dong, Honglin & Wang, Dandan & Niu, Xiaofeng & Zhang, Yue & He, Xu & Ke, Qing & Lu, Zhiheng, 2022. "Experimental study on the liquid desiccant dehumidification performance of microencapsulated phase change materials slurry," Energy, Elsevier, vol. 239(PC).
    10. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    11. Yang, Zili & Tao, Ruiyang & Ni, Hui & Zhong, Ke & Lian, Zhiwei, 2019. "Performance study of the internally-cooled ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 175(C), pages 745-757.
    12. Yon, Hao Ren & Cai, Wenjian & Wang, Youyi & Shen, Suping, 2018. "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition," Applied Energy, Elsevier, vol. 211(C), pages 249-258.
    13. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    14. Cihan, Ertuğrul & Kavasoğulları, Barış & Demir, Hasan, 2017. "Enhancement of performance of open liquid desiccant system with surface additive," Renewable Energy, Elsevier, vol. 114(PB), pages 1101-1112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Guan, Bowen & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions for the optimal cooling and heating source temperatures in liquid desiccant air-conditioning system based on exergy analysis," Energy, Elsevier, vol. 203(C).
    4. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    5. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    6. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    7. Yang, Zili & Tao, Ruiyang & Chen, Lu-An & Zhong, Ke & Chen, Bin, 2020. "Feasibility study on improving the performance of atomization liquid desiccant dehumidifier with standing-wave ultrasound," Energy, Elsevier, vol. 205(C).
    8. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
    9. Harrouz, Jean Paul & Ghali, Kamel & Keniar, Khoudor & Ghaddar, Nesreen, 2023. "Numerical and experimental investigation of thermosyphon-driven liquid desiccant loop performance for sustainable indoor humidity removal," Applied Energy, Elsevier, vol. 343(C).
    10. Zhan, Changfeng & Yin, Yonggao & Guo, Xiaoshuang & Jin, Xing & Zhang, Xiaosong, 2018. "Investigation on drying performance and alternative analysis of different liquid desiccants in compressed air drying system," Energy, Elsevier, vol. 165(PB), pages 1-9.
    11. Cao, Bowen & Yin, Yonggao & Xu, Guoying & Cheng, Xiaosong & Li, Wenzhang & Ji, Qiang & Chen, Wanhe, 2023. "A proposed method of bubble absorption-based deep dehumidification using the ionic liquid for low-humidity industrial environments with experimental performance," Applied Energy, Elsevier, vol. 348(C).
    12. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    14. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    15. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    16. Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
    17. Huo, Jinhua & Zhang, Ruizhi & Yu, Baisong & Che, Yuanjun & Wu, Zhansheng & Zhang, Xing & Peng, Zhigang, 2022. "Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development," Energy, Elsevier, vol. 239(PD).
    18. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    19. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    20. Hernan Hernandez-Herrera & Jorge I. Silva-Ortega & Vicente Leonel Mart nez Diaz & Zaid Garc a Sanchez & Gilberto Gonz lez Garc a & Sandra M. Escorcia & Habid E. Zarate, 2020. "Energy Savings Measures in Compressed Air Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 414-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.