Large-scale three-dimensional simulation of proton exchange membrane fuel cell considering detailed water transition mechanism
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.120469
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
- Zhang, Guobin & Yuan, Hao & Wang, Yun & Jiao, Kui, 2019. "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 255(C).
- Sun, Hong & Xie, Chen & Chen, Hao & Almheiri, Saif, 2015. "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane," Applied Energy, Elsevier, vol. 160(C), pages 937-944.
- Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
- Chiu, Han-Chieh & Jang, Jer-Huan & Yan, Wei-Mon & Li, Hung-Yi & Liao, Chih-Cheng, 2012. "A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields," Applied Energy, Elsevier, vol. 96(C), pages 359-370.
- Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
- Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Jinxing & Bao, Zhiming & Xu, Yunfei & Fan, Linhao & Du, Qing & Qu, Guanshu & Li, Feiqiang & Jiao, Kui, 2024. "Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: Effects of sub-distribution zone," Applied Energy, Elsevier, vol. 358(C).
- Lu, Guolong & Liu, Mingxin & Su, Xunkang & Zheng, Tongxi & Luan, Yang & Fan, Wenxuan & Cui, Hao & Liu, Zhenning, 2024. "Study on counter-flow mass transfer characteristics and performance optimization of commercial large-scale proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 359(C).
- Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
- Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
- Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
- Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
- Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
- Blal, Mohamed & Benatiallah, Ali & NeÇaibia, Ammar & Lachtar, Salah & Sahouane, Nordine & Belasri, Ahmed, 2019. "Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation," Energy, Elsevier, vol. 168(C), pages 182-199.
- Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
- Zhiming Zhang & Sai Wu & Huimin Miao & Tong Zhang, 2022. "Numerical Investigation of Flow Channel Design and Tapered Slope Effects on PEM Fuel Cell Performance," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
- Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
- Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
- Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
- Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
- Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
- Tian, Pengjie & Liu, Xuejun & Luo, Kaiyao & Li, Hongkun & Wang, Yun, 2021. "Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power," Applied Energy, Elsevier, vol. 288(C).
- Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
- Zhang, Yong & He, Shirong & Jiang, Xiaohui & Yang, Xi & Wang, Zhuo & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Full-scale three-dimensional simulation of air cooling metal bipolar plate proton exchange membrane fuel cell stack considering a non-isothermal multiphase model," Applied Energy, Elsevier, vol. 357(C).
- Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
- Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
More about this item
Keywords
PEM fuel cell; Large-scale simulation; Water transition mechanism; On-board condition; Wavy flow field;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017263. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.