IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223032851.html
   My bibliography  Save this article

Towards a greener future: How green technology innovation and energy efficiency are transforming sustainability

Author

Listed:
  • Song, Aifeng
  • Rasool, Zeeshan
  • Nazar, Raima
  • Anser, Muhammad Khalid

Abstract

Green technology innovation has gained incessant recognition due to rising concerns about environmental sustainability. It has the potential to improve energy efficiency by increasing total factor carbon productivity through mitigating effects. This research probes the asymmetric nexus between green technology innovation and energy efficiency in the top ten green innovator economies (Switzerland, Sweden, Germany, USA, Denmark, Finland, UK, Netherlands, Japan, and Norway). Prior investigations applied panel data approaches to acquire persistent outcomes on the green technology innovation-energy efficiency nexus, even though some countries did not individually demonstrate such a link. Comparatively, this study employs a distinctive 'Quantile-on-Quantile' technique that enables investigators to examine time-series dependence in each country by furnishing an international yet economy-specified understanding of the conjunction between the variables. Estimations disclose that green technology innovation improves energy efficiency in the majority of our selected economies at particular quantiles. It is also demonstrated that the asymmetries between our variables fluctuate among countries, highlighting the need for special care when adopting green innovation, energy efficiency, and sustainable environment policies.

Suggested Citation

  • Song, Aifeng & Rasool, Zeeshan & Nazar, Raima & Anser, Muhammad Khalid, 2024. "Towards a greener future: How green technology innovation and energy efficiency are transforming sustainability," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223032851
    DOI: 10.1016/j.energy.2023.129891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xin & Mahendru, Mandeep & Ma, Xiaowei & Rao, Amar & Shang, Yuping, 2022. "Impacts of environmental regulations on green economic growth in China: New guidelines regarding renewable energy and energy efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 728-742.
    2. Khan, Zeeshan & Malik, Muhammad Yousaf & Latif, Kashmala & Jiao, Zhilun, 2020. "Heterogeneous effect of eco-innovation and human capital on renewable & non-renewable energy consumption: Disaggregate analysis for G-7 countries," Energy, Elsevier, vol. 209(C).
    3. Wang, Shuguang & Sun, Luang & Iqbal, Sajid, 2022. "Green financing role on renewable energy dependence and energy transition in E7 economies," Renewable Energy, Elsevier, vol. 200(C), pages 1561-1572.
    4. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    5. Malka, Lorenc & Bidaj, Flamur & Kuriqi, Alban & Jaku, Aldona & Roçi, Rexhina & Gebremedhin, Alemayehu, 2023. "Energy system analysis with a focus on future energy demand projections: The case of Norway," Energy, Elsevier, vol. 272(C).
    6. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    7. Lorenc Malka & Alfred Daci & Alban Kuriqi & Pietro Bartocci & Ermonela Rrapaj, 2022. "Energy Storage Benefits Assessment Using Multiple-Choice Criteria: The Case of Drini River Cascade, Albania," Energies, MDPI, vol. 15(11), pages 1-22, May.
    8. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    9. Habiba, Umme & Xinbang, Cao & Anwar, Ahsan, 2022. "Do green technology innovations, financial development, and renewable energy use help to curb carbon emissions?," Renewable Energy, Elsevier, vol. 193(C), pages 1082-1093.
    10. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    11. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    12. Muhammad Asif Qureshi & Jawaid Ahmed Qureshi & Ammar Ahmed & Shahzad Qaiser & Ramsha Ali & Arshian Sharif, 2020. "The Dynamic Relationship Between Technology Innovation and Human Development in Technologically Advanced Countries: Fresh Insights from Quantiles-on-Quantile Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(2), pages 555-580, November.
    13. Ahmet Koseoglu & Ali Gokhan Yucel & Recep Ulucak, 2022. "Green innovation and ecological footprint relationship for a sustainable development: Evidence from top 20 green innovator countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 976-988, October.
    14. Paramati, Sudharshan Reddy & Shahzad, Umer & Doğan, Buhari, 2022. "The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    16. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jie & Wang, Jun, 2024. "“Booster” or “Obstacle”: Can digital transformation improve energy efficiency? Firm-level evidence from China," Energy, Elsevier, vol. 296(C).
    2. Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yunpeng & Razzaq, Asif & Sun, Huaping & Irfan, Muhammad, 2022. "The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model," Renewable Energy, Elsevier, vol. 193(C), pages 334-343.
    2. Guan, Zepeng & Hossain, Mohammad Razib & Sheikh, Muhammad Ramzan & Khan, Zeeshan & Gu, Xiao, 2023. "Unveiling the interconnectedness between energy-related GHGs and pro-environmental energy technology: Lessons from G-7 economies with MMQR approach," Energy, Elsevier, vol. 281(C).
    3. Muhammad Asif Qureshi & Jawaid Ahmed Qureshi & Ammar Ahmed & Shahzad Qaiser & Ramsha Ali & Arshian Sharif, 2020. "The Dynamic Relationship Between Technology Innovation and Human Development in Technologically Advanced Countries: Fresh Insights from Quantiles-on-Quantile Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(2), pages 555-580, November.
    4. Cheng Jin & Asif Razzaq & Faiza Saleem & Avik Sinha, 2022. "Asymmetric effects of eco-innovation and human capital development in realizing environmental sustainability in China: evidence from quantile ARDL framework," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4947-4970, December.
    5. Mahmood, Nasir & Zhao, Yingjun & Lou, Qinqin & Geng, Jinzhou, 2022. "Role of environmental regulations and eco-innovation in energy structure transition for green growth: Evidence from OECD," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    6. Muhammad Ramzan & Ummara Razi & Muhammad Umer Quddoos & Tomiwa Sunday Adebayo, 2023. "Do green innovation and financial globalization contribute to the ecological sustainability and energy transition in the United Kingdom? Policy insights from a bootstrap rolling window approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 393-414, February.
    7. Bakhsh, Satar & Zhang, Wei & Ali, Kishwar & Anas, Muhammad, 2024. "Transition towards environmental sustainability through financial inclusion, and digitalization in China: Evidence from novel quantile-on-quantile regression and wavelet coherence approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    8. Bartosz Jóźwik & Betül Altay Topcu & Mesut Doğan, 2024. "The Impact of Nuclear Energy Consumption, Green Technological Innovation, and Trade Openness on the Sustainable Environment in the USA," Energies, MDPI, vol. 17(15), pages 1-17, August.
    9. Sinha, Avik & Shah, Muhammad Ibrahim & Sengupta, Tuhin & Jiao, Zhilun, 2020. "Analyzing Technology-Emissions Association in Top-10 Polluted MENA Countries: How to Ascertain Sustainable Development by Quantile Modeling Approach," MPRA Paper 100253, University Library of Munich, Germany, revised 2020.
    10. Chang, Lei & Taghizadeh-Hesary, Farhad & Chen, Huangen & Mohsin, Muhammad, 2022. "Do green bonds have environmental benefits?," Energy Economics, Elsevier, vol. 115(C).
    11. Yu, Siming & Wan, Kang & Cai, Cheng & Xu, Lingli & Zhao, Tuanjie, 2023. "Resource curse and green growth in China: Role of energy transitions under COP26 declarations," Resources Policy, Elsevier, vol. 85(PA).
    12. Liu, Wei & Shen, Yedan & Razzaq, Asim, 2023. "How renewable energy investment, environmental regulations, and financial development derive renewable energy transition: Evidence from G7 countries," Renewable Energy, Elsevier, vol. 206(C), pages 1188-1197.
    13. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    14. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    15. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    16. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    17. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    18. Chris Belmert Milindi & Roula Inglesi-Lotz, 2023. "Impact of technological progress on carbon emissions in different country income groups," Energy & Environment, , vol. 34(5), pages 1348-1382, August.
    19. Shahbaz, Muhammad & Nwani, Chinazaekpere & Bekun, Festus Victor & Gyamfi, Bright Akwasi & Agozie, Divine Q., 2022. "Discerning the role of renewable energy and energy efficiency in finding the path to cleaner consumption and production patterns: New insights from developing economies," Energy, Elsevier, vol. 260(C).
    20. Xuhui Ding & Zhongyao Cai & Qianqian Xiao & Suhui Gao, 2019. "A Study on The Driving Factors and Spatial Spillover of Carbon Emission Intensity in The Yangtze River Economic Belt under Double Control Action," IJERPH, MDPI, vol. 16(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223032851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.