IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920312745.html
   My bibliography  Save this article

Effect of power quality on the design of proton exchange membrane water electrolysis systems

Author

Listed:
  • Koponen, Joonas
  • Ruuskanen, Vesa
  • Hehemann, Michael
  • Rauls, Edward
  • Kosonen, Antti
  • Ahola, Jero
  • Stolten, Detlef

Abstract

Water electrolyzer technologies may play a key role in the decarbonization of the fossil-fueled world economy. Electrolytic hydrogen production could bridge emission-free power generation and various energy end-use sectors to drive the energy system towards a net zero-emission level. In order to reduce the economic cost of the required energy transition, both the overall system efficiency in converting electrical energy into the chemical energy carried by hydrogen, and the material used to build electrolytic cell stacks, should be optimal. The effect of power quality on the specific energy consumption of proton exchange membrane (PEM) water electrolyzers is investigated with a semi-empirical cell model. An experimentally-defined polarization curve is applied to analyze cell-specific energy consumption as a function of time in the case of sinusoidal current ripples and ripples excited by an industrial 12-pulse thyristor bridge. The results show that the effective electrolyzer cell area should be up to five times as high as an ideal DC power supply when powered by the 12-pulse thyristor rectifier supply to match the specific energy consumption between the two power supply configurations. Therefore, the improvement of power quality is crucial for industrial PEM water electrolyzer systems. The presented approach is applicable to simulate the effect of power quality for different proton exchange membrane electolyzers.

Suggested Citation

  • Koponen, Joonas & Ruuskanen, Vesa & Hehemann, Michael & Rauls, Edward & Kosonen, Antti & Ahola, Jero & Stolten, Detlef, 2020. "Effect of power quality on the design of proton exchange membrane water electrolysis systems," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312745
    DOI: 10.1016/j.apenergy.2020.115791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920312745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Speckmann, Friedrich-W. & Bintz, Steffen & Birke, Kai Peter, 2019. "Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation," Applied Energy, Elsevier, vol. 250(C), pages 855-863.
    2. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    3. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    4. Ruuskanen, Vesa & Koponen, Joonas & Sillanpää, Teemu & Huoman, Kimmo & Kosonen, Antti & Niemelä, Markku & Ahola, Jero, 2018. "Design and implementation of a power-hardware-in-loop simulator for water electrolysis emulation," Renewable Energy, Elsevier, vol. 119(C), pages 106-115.
    5. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayed-Ahmed, H. & Toldy, Á.I. & Santasalo-Aarnio, A., 2024. "Dynamic operation of proton exchange membrane electrolyzers—Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    3. Tianze Yuan & Hua Li & Jikang Wang & Dong Jia, 2023. "Research on the Influence of Ripple Voltage on the Performance of a Proton Exchange Membrane Electrolyzer," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).
    5. Järvinen, Lauri & Puranen, Pietari & Ruuskanen, Vesa & Kosonen, Antti & Ahola, Jero & Kauranen, Pertti, 2024. "Applicability of linear models in modeling dynamic behavior of alkaline water electrolyzer stack," Renewable Energy, Elsevier, vol. 232(C).
    6. Xu, Boshi & Yang, Yang & Li, Jun & Wang, Yang & Ye, Dingding & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "Computational assessment of response to fluctuating load of renewable energy in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 232(C).
    7. Yu Deng & Jingang Han, 2024. "Energy Management of Green Port Multi-Energy Microgrid Based on Fuzzy Logic Control," Energies, MDPI, vol. 17(14), pages 1-26, July.
    8. Mohamed Mohamed Khaleel & Mohd Rafi Adzman & Samila Mat Zali, 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM," Energies, MDPI, vol. 14(21), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    4. Hesel, Philipp & Braun, Sebastian & Zimmermann, Florian & Fichtner, Wolf, 2022. "Integrated modelling of European electricity and hydrogen markets," Applied Energy, Elsevier, vol. 328(C).
    5. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    6. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    7. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    8. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    9. Chi, Yingtian & Lin, Jin & Li, Peiyang & Yu, Zhipeng & Mu, Shujun & Li, Xi & Song, Yonghua, 2024. "Elevating the acceptable cost threshold for solid oxide cells: A case study on refinery decarbonization," Applied Energy, Elsevier, vol. 373(C).
    10. George, Jan Frederick & Müller, Viktor Paul & Winkler, Jenny & Ragwitz, Mario, 2022. "Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany," Energy Policy, Elsevier, vol. 167(C).
    11. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
    13. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    14. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.
    15. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    16. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    17. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    18. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    19. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.