IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011964.html
   My bibliography  Save this article

Bleed air CFD modelling in aerodynamic simulation of A heavy duty gas turbine compressor

Author

Listed:
  • Qiang, Xiaoqing
  • Lu, Yao
  • Li, Jian

Abstract

This study investigates the effects of different bleed air CFD modelling methods on the aerodynamic simulation of a heavy-duty gas turbine multistage compressor with bleed airflow. Two methods, the local source term method and the simplified bleed off-take geometry method, are compared. The results reveal that while overall compressor performance shows minimal variation between the methods, significant differences are observed near the blade tip region. The bleed source term method predicts a more uniform flow field in the bleed cavity, leading to a larger surge margin for the compressor. Therefore, in the analysis of multistage compressors, it is advisable to adopt simplified geometric modeling method for simulating bleed air extraction. Moreover, when utilizing this approach, careful consideration should be given to the choice of the slot inclination angle. This design parameter presents a crucial trade-off between losses within the exhaust structure and those arising from the entry of mainstream flow into the exhaust slot cavity.

Suggested Citation

  • Qiang, Xiaoqing & Lu, Yao & Li, Jian, 2024. "Bleed air CFD modelling in aerodynamic simulation of A heavy duty gas turbine compressor," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011964
    DOI: 10.1016/j.energy.2024.131423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Haoran & Duan, Zhongdi & Wang, Xuyang & Wang, Dawei & Wu, Chengyun, 2023. "A pressure-node based dynamic model for simulation and control of aircraft air-conditioning systems," Energy, Elsevier, vol. 263(PD).
    2. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    3. Mohammadian, Poorya Keshavarz & Saidi, Mohammad Hassan, 2019. "Simulation of startup operation of an industrial twin-shaft gas turbine based on geometry and control logic," Energy, Elsevier, vol. 183(C), pages 1295-1313.
    4. Kim, Sangjo & Son, Changmin & Kim, Kuisoon, 2017. "Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system," Energy, Elsevier, vol. 119(C), pages 199-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    2. Kim, Sangjo & Kim, Kuisoon & Son, Changmin, 2020. "A new transient performance adaptation method for an aero gas turbine engine," Energy, Elsevier, vol. 193(C).
    3. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    4. Kilic, Ugur & Yalin, Gorkem & Cam, Omer, 2023. "Digital twin for Electronic Centralized Aircraft Monitoring by machine learning algorithms," Energy, Elsevier, vol. 283(C).
    5. Tammo Zobel & Andreas Ritter & Christopher H. Onder, 2023. "The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 16(10), pages 1-24, May.
    6. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    7. Omar Mohamed & Ashraf Khalil, 2020. "Progress in Modeling and Control of Gas Turbine Power Generation Systems: A Survey," Energies, MDPI, vol. 13(9), pages 1-26, May.
    8. Pang, Liping & Luo, Kun & Yuan, Yanping & Mao, Xiaodong & Fang, Yufeng, 2020. "Thermal performance of helicopter air conditioning system with lube oil source (LOS) heat pump," Energy, Elsevier, vol. 190(C).
    9. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    10. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    11. Zhen, Man & Dong, Xuezhi & Shao, Dong & Liu, Xiyang & Tan, Chunqing, 2024. "Research on high fidelity modelling and optimum designing of an adaptive cycle engine's starting process," Energy, Elsevier, vol. 294(C).
    12. Jia, Xingyun & Zhou, Dengji, 2024. "Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine," Energy, Elsevier, vol. 288(C).
    13. Kim, Sangjo & Kim, Kuisoon & Son, Changmin, 2020. "Transient system simulation for an aircraft engine using a data-driven model," Energy, Elsevier, vol. 196(C).
    14. Cui, Zhiquan & Yan, Zhiqi & Zhao, Minghang & Zhong, Shisheng, 2022. "Gas path parameter prediction of aero-engine based on an autoregressive discrete convolution sum process neural network," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    15. Chen, Youliang & Huang, Xiaoguang & Li, Wei & Fan, Rong & Zi, Pingyang & Wang, Xin, 2023. "Application of deep learning modelling of the optimal operation conditions of auxiliary equipment of combined cycle gas turbine power station," Energy, Elsevier, vol. 285(C).
    16. Guan, Jin & Lv, Xiaojing & Spataru, Catalina & Weng, Yiwu, 2021. "Experimental and numerical study on self-sustaining performance of a 30-kW micro gas turbine generator system during startup process," Energy, Elsevier, vol. 236(C).
    17. Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.