IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021664.html
   My bibliography  Save this article

Thermal management of electric vehicle power cabin based on fast zero-dimensional integrating accurate three-dimensional optimization model

Author

Listed:
  • Li, Peimiao
  • Wang, Shibo
  • Wang, Hui
  • Feng, Yun
  • Li, Hongliang
  • Xiao, Heye

Abstract

The heat dissipation scheme design of power cabin is limited by complex configuration and slow iteration speed. Given the considerable time and computing resources required by numerical experiment, this work proposes a fast zero dimensional integrating accurate three-dimensional optimization model to calculate the heat dissipation and optimize the thermal management in electric vehicle power cabin. Based on the existing thermal equivalent circuit model, the heat capacity and thermal resistance network among each equipment is established in fast zero-dimensional model, and the output of fast zero-dimensional model is corrected by referring to the accurate initial three-dimensional simulation results. Then, the optimal heat dissipation configuration is searched by zero-dimensional model and validated by experimental data. Results show that the optimization result of fast zero dimensional integrating accurate three-dimensional optimization model is well verified by three-dimensional model. The chip temperature of the power cabin motor controller can be reduced from 551.73 K to 352.31 K after optimizing the number and size of the pin-fins of the motor controller using the proposed model. The time consumption of fast zero dimensional integrating accurate three-dimensional optimization model is 72.0872 h, while the time consumption of three-dimensional model is about 576 h with 224 cores of computer. The proposed model can be used to achieve the purpose of rapidly predicting the temperature change of the complex vehicle design, and provide theoretical reference for the reasonable formulation of the heat dissipation scheme.

Suggested Citation

  • Li, Peimiao & Wang, Shibo & Wang, Hui & Feng, Yun & Li, Hongliang & Xiao, Heye, 2025. "Thermal management of electric vehicle power cabin based on fast zero-dimensional integrating accurate three-dimensional optimization model," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021664
    DOI: 10.1016/j.apenergy.2024.124783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.