IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021664.html
   My bibliography  Save this article

Thermal management of electric vehicle power cabin based on fast zero-dimensional integrating accurate three-dimensional optimization model

Author

Listed:
  • Li, Peimiao
  • Wang, Shibo
  • Wang, Hui
  • Feng, Yun
  • Li, Hongliang
  • Xiao, Heye

Abstract

The heat dissipation scheme design of power cabin is limited by complex configuration and slow iteration speed. Given the considerable time and computing resources required by numerical experiment, this work proposes a fast zero dimensional integrating accurate three-dimensional optimization model to calculate the heat dissipation and optimize the thermal management in electric vehicle power cabin. Based on the existing thermal equivalent circuit model, the heat capacity and thermal resistance network among each equipment is established in fast zero-dimensional model, and the output of fast zero-dimensional model is corrected by referring to the accurate initial three-dimensional simulation results. Then, the optimal heat dissipation configuration is searched by zero-dimensional model and validated by experimental data. Results show that the optimization result of fast zero dimensional integrating accurate three-dimensional optimization model is well verified by three-dimensional model. The chip temperature of the power cabin motor controller can be reduced from 551.73 K to 352.31 K after optimizing the number and size of the pin-fins of the motor controller using the proposed model. The time consumption of fast zero dimensional integrating accurate three-dimensional optimization model is 72.0872 h, while the time consumption of three-dimensional model is about 576 h with 224 cores of computer. The proposed model can be used to achieve the purpose of rapidly predicting the temperature change of the complex vehicle design, and provide theoretical reference for the reasonable formulation of the heat dissipation scheme.

Suggested Citation

  • Li, Peimiao & Wang, Shibo & Wang, Hui & Feng, Yun & Li, Hongliang & Xiao, Heye, 2025. "Thermal management of electric vehicle power cabin based on fast zero-dimensional integrating accurate three-dimensional optimization model," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021664
    DOI: 10.1016/j.apenergy.2024.124783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farsi, Aida & Rosen, Marc A., 2023. "Performance analysis of a hybrid aircraft propulsion system using solid oxide fuel cell, lithium ion battery and gas turbine," Applied Energy, Elsevier, vol. 329(C).
    2. Boukoberine, Mohamed Nadir & Zhou, Zhibin & Benbouzid, Mohamed, 2019. "A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects," Applied Energy, Elsevier, vol. 255(C).
    3. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    4. Han, Jie & Liu, Wenxue & Zheng, Yusheng & Khalatbarisoltani, Arash & Yang, Yalian & Hu, Xiaosong, 2023. "Health-conscious predictive energy management strategy with hybrid speed predictor for plug-in hybrid electric vehicles: Investigating the impact of battery electro-thermal-aging models," Applied Energy, Elsevier, vol. 352(C).
    5. Sun, Haoran & Duan, Zhongdi & Wang, Xuyang & Wang, Dawei & Wu, Chengyun, 2023. "A pressure-node based dynamic model for simulation and control of aircraft air-conditioning systems," Energy, Elsevier, vol. 263(PD).
    6. Yu, Quanqing & Nie, Yuwei & Peng, Simin & Miao, Yifan & Zhai, Chengzhi & Zhang, Runfeng & Han, Jinsong & Zhao, Shuo & Pecht, Michael, 2023. "Evaluation of the safety standards system of power batteries for electric vehicles in China," Applied Energy, Elsevier, vol. 349(C).
    7. Teimouri, Zahra & Borugadda, Venu Babu & Dalai, Ajay K. & Abatzoglou, Nicolas, 2022. "Application of computational fluid dynamics for modeling of Fischer-Tropsch synthesis as a sustainable energy resource in different reactor configurations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    9. Wang, Shibo & Li, Peimiao & Wang, Hui & Feng, Yun & Li, Hongliang, 2024. "Multimodal transient topology optimization design of heat dissipation structure in electric aircraft power cabin," Applied Energy, Elsevier, vol. 371(C).
    10. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Wang, Chen & Lin, Qiyin & Pan, Zongkun & Hong, Jun & Zhou, Yicong, 2024. "Thermal contact analysis of Flip-Chip package considering microscopic contacts of double-layer thermal interface materials," Applied Energy, Elsevier, vol. 356(C).
    12. Nivelle, Philippe & Tsanakas, John A. & Poortmans, Jef & Daenen, Michaël, 2021. "Stress and strain within photovoltaic modules using the finite element method: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    2. Gao, Qiang & Lu, Yue & Liu, Xiangdong & Chen, Yongping, 2024. "A novel pulse liquid immersion cooling strategy for Lithium-ion battery pack," Energy, Elsevier, vol. 310(C).
    3. Zhang, Baifu & Zhao, Zhen & Li, Yongxin & Zhang, Xiaohui & Li, Xinjun & Hao, Daning & Zhang, Zutao, 2025. "Design and analysis of a piezoelectric energy harvesting shock absorber for light truck applications," Applied Energy, Elsevier, vol. 377(PB).
    4. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    5. Kumar, Kartik & Sarkar, Jahar & Mondal, Swasti Sundar, 2024. "Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework," Applied Energy, Elsevier, vol. 355(C).
    6. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    7. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    8. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    9. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    10. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    11. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    12. Papargyri, Lamprini & Papanastasiou, Panos & Georghiou, George E., 2022. "Effect of materials and design on PV cracking under mechanical loading," Renewable Energy, Elsevier, vol. 199(C), pages 433-444.
    13. Boldoo, Tsogtbilegt & Chinnasamy, Veerakumar & Cho, Honghyun, 2024. "Enhancing efficiency and sustainability: Utilizing high energy density paraffin-based various PCM emulsions for low-medium temperature applications," Energy, Elsevier, vol. 303(C).
    14. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong & Zhang, Yiwei, 2024. "An improved soft actor-critic-based energy management strategy of heavy-duty hybrid electric vehicles with dual-engine system," Energy, Elsevier, vol. 308(C).
    15. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    16. Hu, Dunan & Huang, Sheng & Wen, Zhen & Gu, Xiuquan & Lu, Jianguo, 2024. "A review on thermal runaway warning technology for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    17. Michał Musiał & Lech Lichołai & Dušan Katunský, 2023. "Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings," Energies, MDPI, vol. 16(11), pages 1-28, May.
    18. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    19. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    20. Peng, Simin & Zhu, Junchao & Wu, Tiezhou & Yuan, Caichenran & Cang, Junjie & Zhang, Kai & Pecht, Michael, 2024. "Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.