IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031037.html
   My bibliography  Save this article

Numerical investigations of aerodynamic characteristics in highly loaded tandem cascades with end-bend

Author

Listed:
  • Luo, Qiao
  • Luo, Lei
  • Du, Wei
  • Yan, Han
  • Wang, Songtao

Abstract

Tandem cascades and end-bend blades can reduce compressor losses and promote energy conservation. In this study, a vortex model tailored for tandem cascades is proposed. Numerical investigations are conducted to elucidate the influence of end-bend heights and angles on aerodynamic characteristics. A quantitative assessment of the loss contribution for each vortex is provided based on loss weight coefficients. The findings demonstrate that end-bend angles exert a more pronounced impact on aerodynamic characteristics than end-bend heights. Although the implementation of end-bend increases the loss of the front blade trailing edge shedding vortex, it reduces losses by weakening the passage vortex and the rear blade trailing edge shedding vortex, resulting in a net decrease of the total loss. The end-bend blade optimizes the loading profile near the endwall, characterized by an expanded low-pressure zone behind the gap. A comparative analysis is performed among four tandem cascades: straight, curved, end-bend, and combined curved-end-bend. The correlation between losses, vortices, and topological structures is established by using topological analysis together with the vortex model. It is a crucial research methodology for elucidating the mechanisms of loss generation and vortex dynamics in tandem cascades with end-bend.

Suggested Citation

  • Luo, Qiao & Luo, Lei & Du, Wei & Yan, Han & Wang, Songtao, 2024. "Numerical investigations of aerodynamic characteristics in highly loaded tandem cascades with end-bend," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031037
    DOI: 10.1016/j.energy.2024.133327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Hanan & Li, Qiushi & Pan, Tianyu, 2016. "Optimization of cantilevered stators in an industrial multistage compressor to improve efficiency," Energy, Elsevier, vol. 106(C), pages 590-601.
    2. Li, Zhihui & Liu, Yanming, 2017. "Blade-end treatment for axial compressors based on optimization method," Energy, Elsevier, vol. 126(C), pages 217-230.
    3. Qiang, Xiaoqing & Lu, Yao & Li, Jian, 2024. "Bleed air CFD modelling in aerodynamic simulation of A heavy duty gas turbine compressor," Energy, Elsevier, vol. 299(C).
    4. Du, Juan & Li, Yiwen & Li, Zhihui & Li, Jichao & Wang, Zinan & Zhang, Hongwu, 2019. "Performance enhancement of industrial high loaded gas compressor using Coanda jet flap," Energy, Elsevier, vol. 172(C), pages 618-629.
    5. Xia, Zhiheng & Luo, Jiaqi & Liu, Feng, 2019. "Statistical evaluation of performance impact of flow variations for a transonic compressor rotor blade," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shijun & Wang, Songtao & Chen, Shaowen, 2020. "The influence of diversified forward sweep heights on operating range and performance of an ultra-high-load low-reaction transonic compressor rotor," Energy, Elsevier, vol. 194(C).
    2. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    3. Yumeng Tang & Yangwei Liu, 2020. "Aerodynamic Investigation of Datum and Slotted Blade Profiles under Different Mach Number Conditions," Energies, MDPI, vol. 13(7), pages 1-22, April.
    4. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    5. Tang, Xinzi & Wang, Zhe & Xiao, Peng & Peng, Ruitao & Liu, Xiongwei, 2020. "Uncertainty quantification based optimization of centrifugal compressor impeller for aerodynamic robustness under stochastic operational conditions," Energy, Elsevier, vol. 195(C).
    6. Yue, Wenhao & Yang, Chen & Shi, Chenyue & Yang, Jinguang & Liao, Naibing, 2024. "Uncertainty quantification of the inlet boundary conditions in a supercritical CO2 centrifugal compressor based on the non-intrusive polynomial chaos," Energy, Elsevier, vol. 310(C).
    7. Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
    8. Wang, Kun & Chen, Fu & Yu, Jianyang & Song, Yanping & Ghorbaniasl, Ghader, 2023. "Effect of uncertain operating conditions on the aerodynamic performance of high-pressure axial turbomachinery blades," Energy, Elsevier, vol. 283(C).
    9. Cheng, Hongzhi & Zhou, Chuangxin & Lu, Xingen & Zhao, Shengfeng & Han, Ge & Yang, Chengwu, 2023. "Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.