IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221001122.html
   My bibliography  Save this article

A new performance adaptation method for aero gas turbine engines based on large amounts of measured data

Author

Listed:
  • Kim, Sangjo

Abstract

Multiple unexpected uncertainty factors can occur when measuring gas turbine engine data, and the quality of the measured data can directly affect the accuracy of gas turbine engine models during performance adaptation. In the present study, a new performance adaptation method for aero gas turbine engines is proposed to improve prediction accuracy, by effectively processing a large amount of measured data. Adaptation factors were obtained to match the engine model and the measured data of every single operating point. These adaptation factors were then used to adjust the compressor performance, bleed air flow, engine thrust, and exhaust gas temperature. A data clustering technique was employed to exclude physically non-reasonable data points from the time series adaptation factors. The correlations for the adaptation factors were generated by using selected centroids from the clustered data, then the correlations were applied to the engine simulation. As a result, the values in the adapted engine model were in good agreement with transient measurement data. This confirms that the proposed performance adaptation method can be used to generate accurate gas turbine engine models using time series measurement data.

Suggested Citation

  • Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001122
    DOI: 10.1016/j.energy.2021.119863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yanjun & Fard, Soheil Mohagheghi & Khazraee, Milad & Wang, Hong & Khajepour, Amir, 2017. "An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles," Energy, Elsevier, vol. 127(C), pages 318-327.
    2. Haji Haji, Vahab & Fekih, Afef & Monje, ConcepciĆ³n Alicia & Fakhri Asfestani, Ramin, 2020. "Adaptive model predictive control design for the speed and temperature control of a V94.2 gas turbine unit in a combined cycle power plant," Energy, Elsevier, vol. 207(C).
    3. Plis, Marcin & Rusinowski, Henryk, 2017. "Predictive, adaptive model of PG 9171E gas turbine unit including control algorithms," Energy, Elsevier, vol. 126(C), pages 247-255.
    4. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Adaptive model predictive control with propulsion load estimation and prediction for all-electric ship energy management," Energy, Elsevier, vol. 150(C), pages 877-889.
    5. Kim, Sangjo & Kim, Kuisoon & Son, Changmin, 2020. "A new transient performance adaptation method for an aero gas turbine engine," Energy, Elsevier, vol. 193(C).
    6. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    7. Kim, Sangjo & Son, Changmin & Kim, Kuisoon, 2017. "Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system," Energy, Elsevier, vol. 119(C), pages 199-210.
    8. Hafez, A.M. & Kassem, M.A. & Huzayyin, O.A., 2018. "Smart adaptive model for dynamic simulation of horizontal thermally stratified storage tanks," Energy, Elsevier, vol. 142(C), pages 782-792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    2. Cui, Zhiquan & Yan, Zhiqi & Zhao, Minghang & Zhong, Shisheng, 2022. "Gas path parameter prediction of aero-engine based on an autoregressive discrete convolution sum process neural network," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Kilic, Ugur & Yalin, Gorkem & Cam, Omer, 2023. "Digital twin for Electronic Centralized Aircraft Monitoring by machine learning algorithms," Energy, Elsevier, vol. 283(C).
    4. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    5. Chen, Youliang & Huang, Xiaoguang & Li, Wei & Fan, Rong & Zi, Pingyang & Wang, Xin, 2023. "Application of deep learning modelling of the optimal operation conditions of auxiliary equipment of combined cycle gas turbine power station," Energy, Elsevier, vol. 285(C).
    6. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    7. Qiang, Xiaoqing & Lu, Yao & Li, Jian, 2024. "Bleed air CFD modelling in aerodynamic simulation of A heavy duty gas turbine compressor," Energy, Elsevier, vol. 299(C).
    8. Jia, Xingyun & Zhou, Dengji, 2024. "Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine," Energy, Elsevier, vol. 288(C).
    9. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    3. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    4. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    5. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    6. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    7. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    8. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    9. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    10. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & CarreƱo, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    12. Moon, Seong Won & Kwon, Hyun Min & Kim, Tong Seop & Kang, Do Won & Sohn, Jeong Lak, 2018. "A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle," Energy, Elsevier, vol. 160(C), pages 625-634.
    13. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    14. Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Coupling Diagnosis Method for Sensor Faults Detection, Isolation and Estimation of Gas Turbine Engines," Energies, MDPI, vol. 13(18), pages 1-19, September.
    15. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    16. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    17. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Liu, Zhijiang & Ke, Yun & Ding, Shunliang, 2023. "Novel enhancement of energy distribution for marine hybrid propulsion systems by an advanced variable weight decision model predictive control," Energy, Elsevier, vol. 274(C).
    18. Fard, Soheil Mohagheghi & Huang, Yanjun & Khazraee, Milad & Khajepour, Amir, 2017. "A novel anti-idling system for service vehicles," Energy, Elsevier, vol. 127(C), pages 650-659.
    19. Hou, Guolian & Fan, Yuzhen & Wang, Junjie, 2024. "Application of a novel dynamic recurrent fuzzy neural network with rule self-adaptation based on chaotic quantum pigeon-inspired optimization in modeling for gas turbine," Energy, Elsevier, vol. 290(C).
    20. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.