IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017163.html
   My bibliography  Save this article

Experimental and numerical study on self-sustaining performance of a 30-kW micro gas turbine generator system during startup process

Author

Listed:
  • Guan, Jin
  • Lv, Xiaojing
  • Spataru, Catalina
  • Weng, Yiwu

Abstract

The safe startup of micro gas turbine (MGT) generator system is the premise of normal operation. The whole start-up process contains motor startup, ignition, speed acceleration, motor switching to generator and power acceleration. Motor switching to generator happens at the self-sustaining state, which is significant to safe start-up process. However, characteristics of MGT generator system at self-sustaining state are hardly to investigate due to the lack of performance maps and complete experiments. Therefore, this work analyzed start-up schedule and presented a theoretical and experimental study on the self-sustaining performance of MGT generator system, based on the self-designed 30 kW MGT generator system built in Jiangjin Turbocharger Plant, China. The self-sustaining speed boundary and fuel consumption area is determined from the aspects of safe startup. A novel principle for determining the self-sustaining point (SSP) is proposed. Results show that the self-sustaining state can be achieved only when speed is over 26,750 rpm, and the SSP is determined at the speed of 30,750 rpm based on the proposed principle. Finally, the self-sustaining TIT and natural gas flow are compared with the experimental data, with two relative errors both almost within 4%. This method is instructive to the MGT generator system startup process.

Suggested Citation

  • Guan, Jin & Lv, Xiaojing & Spataru, Catalina & Weng, Yiwu, 2021. "Experimental and numerical study on self-sustaining performance of a 30-kW micro gas turbine generator system during startup process," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017163
    DOI: 10.1016/j.energy.2021.121468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    2. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    3. Aichmayer, Lukas & Garrido, Jorge & Laumert, Björn, 2020. "Thermo-mechanical solar receiver design and validation for a micro gas-turbine based solar dish system," Energy, Elsevier, vol. 196(C).
    4. Kim, Min Jae & Kim, Tong Seop, 2019. "Integration of compressed air energy storage and gas turbine to improve the ramp rate," Applied Energy, Elsevier, vol. 247(C), pages 363-373.
    5. Al-attab, K.A. & Zainal, Z.A., 2010. "Turbine startup methods for externally fired micro gas turbine (EFMGT) system using biomass fuels," Applied Energy, Elsevier, vol. 87(4), pages 1336-1341, April.
    6. Karvountzis-Kontakiotis, Apostolos & Andwari, Amin Mahmoudzadeh & Pesyridis, Apostolos & Russo, Salvatore & Tuccillo, Raffaele & Esfahanian, Vahid, 2018. "Application of Micro Gas Turbine in Range-Extended Electric Vehicles," Energy, Elsevier, vol. 147(C), pages 351-361.
    7. Lv, Xiaojing & Ding, Xiaoyi & Weng, Yiwu, 2019. "Effect of fuel composition fluctuation on the safety performance of an IT-SOFC/GT hybrid system," Energy, Elsevier, vol. 174(C), pages 45-53.
    8. di Gaeta, Alessandro & Reale, Fabrizio & Chiariello, Fabio & Massoli, Patrizio, 2017. "A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid," Energy, Elsevier, vol. 129(C), pages 299-320.
    9. Al-attab, K.A. & Zainal, Z.A., 2018. "Micro gas turbine running on naturally aspirated syngas: An experimental investigation," Renewable Energy, Elsevier, vol. 119(C), pages 210-216.
    10. Mohammadian, Poorya Keshavarz & Saidi, Mohammad Hassan, 2019. "Simulation of startup operation of an industrial twin-shaft gas turbine based on geometry and control logic," Energy, Elsevier, vol. 183(C), pages 1295-1313.
    11. Seo, JeongMin & Lim, Hyung-Soo & Park, JunYoung & Park, Moo Ryong & Choi, Bum Seog, 2017. "Development and experimental investigation of a 500-W class ultra-micro gas turbine power generator," Energy, Elsevier, vol. 124(C), pages 9-18.
    12. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    2. Wenxiang Zhou & Sangwei Lu & Wenjie Kai & Jichang Wu & Chenyang Zhang & Feng Lu, 2023. "A Novel Adaptive Generation Method for Initial Guess Values of Component-Level Aero-Engine Start-Up Models," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    3. Cheng, Hongzhi & Li, Ziliang & Duan, Penghao & Lu, Xingen & Zhao, Shengfeng & Zhang, Yanfeng, 2023. "Robust optimization and uncertainty quantification of a micro axial compressor for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 352(C).
    4. Nareg Basmadjian & Sean Yun & Zekai Hong, 2023. "Optimization of Micro Gas Turbine Based Hybrid Systems for Remote Off-grid Communities," Energy & Environment, , vol. 34(4), pages 1060-1080, June.
    5. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    2. Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).
    3. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    4. Yuqing Zhou & Haibin Liu, 2023. "Temporal and Spatial Distribution of Ozone and Its Influencing Factors in China," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    5. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    6. Tuo Shi & Yuanman Hu & Miao Liu & Chunlin Li & Chuyi Zhang & Chong Liu, 2020. "How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    7. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    8. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    9. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    10. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    11. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    12. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    13. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    14. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    15. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    16. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
    17. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    18. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    19. Yajie Liu & Feng Dong, 2020. "Corruption, Economic Development and Haze Pollution: Evidence from 139 Global Countries," Sustainability, MDPI, vol. 12(9), pages 1-22, April.
    20. Zhiyu Fan & Qingming Zhan & Chen Yang & Huimin Liu & Meng Zhan, 2020. "How Did Distribution Patterns of Particulate Matter Air Pollution (PM 2.5 and PM 10 ) Change in China during the COVID-19 Outbreak: A Spatiotemporal Investigation at Chinese City-Level," IJERPH, MDPI, vol. 17(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.