IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922005232.html
   My bibliography  Save this article

A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions

Author

Listed:
  • Chen, Yu-Zhi
  • Tsoutsanis, Elias
  • Xiang, Heng-Chao
  • Li, Yi-Guang
  • Zhao, Jun-Jie

Abstract

At present, aero engine fault diagnosis is mainly based on the steady-state condition at the cruise phase, and the gas path parameters in the entire flight process are not effectively used. At the same time, high quality steady-state monitoring measurements are not always available and as a result the accuracy of diagnosis might be affected. There is a recognized need for real-time performance diagnosis of aero engines operating under transient conditions, which can improve their condition-based maintenance. Recent studies have demonstrated the capability of the sequential model-based diagnostic method to predict accurately and efficiently the degradation of industrial gas turbines under steady-state conditions. Nevertheless, incorporating real-time data for fault detection of aero engines that operate in dynamic conditions is a more challenging task. The primary objective of this study is to investigate the performance of the sequential diagnostic method when it is applied to aero engines that operate under transient conditions while there is a variation in the bypass ratio and the heat soakage effects are taken into consideration. This study provides a novel approach for quantifying component degradation, such as fouling and erosion, by using an adapted version of the sequential diagnostic method. The research presented here confirms that the proposed method could be applied to aero engine fault diagnosis under both steady-state and dynamic conditions in real-time. In addition, the economic impact of engine degradation on fuel cost and payload revenue is evaluated when the engine under investigation is using hydrogen. The proposed method demonstrated promising diagnostic results where the maximum prediction errors for steady state and transient conditions are less than 0.006% and 0.016%, respectively. The comparison of the proposed method to a benchmark diagnostic method revealed a 15% improvement in accuracy which can have great benefit when considering that the cost attributed to degradation can reach up to $702,585 for 6000 flight cycles of a hydrogen powered aircraft fleet. This study provides an opportunity to improve our understanding of aero engine fault diagnosis in order to improve engine reliability, availability, and efficiency by online health monitoring.

Suggested Citation

  • Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005232
    DOI: 10.1016/j.apenergy.2022.119148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Ogaji, Stephen & Sampath, Suresh & Singh, Riti & Probert, Douglas, 2002. "Novel approach for improving power-plant availability using advanced engine diagnostics," Applied Energy, Elsevier, vol. 72(1), pages 389-407, May.
    3. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    4. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    5. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    6. Kim, Sangjo & Son, Changmin & Kim, Kuisoon, 2017. "Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system," Energy, Elsevier, vol. 119(C), pages 199-210.
    7. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
    8. Plis, Marcin & Rusinowski, Henryk, 2018. "A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnostic systems," Energy, Elsevier, vol. 156(C), pages 606-619.
    9. Tsoutsanis, Elias & Meskin, Nader, 2017. "Derivative-driven window-based regression method for gas turbine performance prognostics," Energy, Elsevier, vol. 128(C), pages 302-311.
    10. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    11. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    12. Safiyullah, F. & Sulaiman, S.A. & Naz, M.Y. & Jasmani, M.S. & Ghazali, S.M.A., 2018. "Prediction on performance degradation and maintenance of centrifugal gas compressors using genetic programming," Energy, Elsevier, vol. 158(C), pages 485-494.
    13. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    14. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    15. Chao, Ching-Cheng & Li, Ru-Guo, 2017. "Effects of cargo types and load efficiency on airline cargo revenues," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 26-33.
    16. Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Chen, Haisheng, 2021. "Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    2. Irani, Fatemeh Negar & Soleimani, Mohammadjavad & Yadegar, Meysam & Meskin, Nader, 2024. "Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator," Applied Energy, Elsevier, vol. 365(C).
    3. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    4. Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
    5. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    2. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    3. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    4. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    5. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    6. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    7. Zagorowska, Marta & Schulze Spüntrup, Frederik & Ditlefsen, Arne-Marius & Imsland, Lars & Lunde, Erling & Thornhill, Nina F., 2020. "Adaptive detection and prediction of performance degradation in off-shore turbomachinery," Applied Energy, Elsevier, vol. 268(C).
    8. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    9. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    10. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
    11. Petrollese, Mario & Cascetta, Mario & Tola, Vittorio & Cocco, Daniele & Cau, Giorgio, 2022. "Pumped thermal energy storage systems integrated with a concentrating solar power section: Conceptual design and performance evaluation," Energy, Elsevier, vol. 247(C).
    12. Irani, Fatemeh Negar & Soleimani, Mohammadjavad & Yadegar, Meysam & Meskin, Nader, 2024. "Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator," Applied Energy, Elsevier, vol. 365(C).
    13. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    14. Qiang, Xiaoqing & Lu, Yao & Li, Jian, 2024. "Bleed air CFD modelling in aerodynamic simulation of A heavy duty gas turbine compressor," Energy, Elsevier, vol. 299(C).
    15. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2022. "Techno-Economic Comparison of Brayton Pumped Thermal Electricity Storage (PTES) Systems Based on Solid and Liquid Sensible Heat Storage," Energies, MDPI, vol. 15(24), pages 1-28, December.
    16. Jesus L. Lobo & Igor Ballesteros & Izaskun Oregi & Javier Del Ser & Sancho Salcedo-Sanz, 2020. "Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants," Energies, MDPI, vol. 13(3), pages 1-28, February.
    17. Muhammad Baqir Hashmi & Mohammad Mansouri & Amare Desalegn Fentaye & Shazaib Ahsan & Konstantinos Kyprianidis, 2024. "An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines," Energies, MDPI, vol. 17(3), pages 1-23, February.
    18. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    19. Abdulrahman Abdullah Bahashwan & Rosdiazli Bin Ibrahim & Madiah Binti Omar & Mochammad Faqih, 2022. "The Lean Blowout Prediction Techniques in Lean Premixed Gas Turbine: An Overview," Energies, MDPI, vol. 15(22), pages 1-21, November.
    20. Seong Won Moon & Tong Seop Kim, 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability," Energies, MDPI, vol. 13(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.