IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011320.html
   My bibliography  Save this article

A multi-stage optimization of battery electric bus transit with battery degradation

Author

Listed:
  • Shehabeldeen, Ali
  • Foda, Ahmed
  • Mohamed, Moataz

Abstract

Battery electric buses (BEBs) are appealing to transit operators for their elevated comfort, low noise, and zero tailpipe emissions. However, the degradation of BEB batteries over time challenges their performance and necessitates infrastructure adjustments. This study develops a generic multi-stage optimization model for BEB systems. The model addresses the dynamic influence of BEB battery degradation rates on the optimal BEB system configuration and operation, including component sizing, charging infrastructure allocation, BEB charging schedule, and battery replacement throughout the BEB usage lifecycle. A surrogate model-based space mapping (SMSM) algorithm is employed to address the inherent nonlinearity of incorporating battery degradation rates within the developed model. The model is tested on a real-world, multi-hub transit network, and the results highlight significant implications of battery degradation on the optimal spatiotemporal allocation of charging infrastructure, charging schedules, and battery replacement decisions throughout the 12-year BEB usage lifecycle. Sensitivity analysis highlights the influence of operational conditions on total system cost, indicating a 16.3 % increase in cost with a 50 % rise in both energy consumption rates and time-of-use (ToU) tariffs. Overall, the proposed model is a valuable decision-making tool for transit operators navigating BEB transit system planning.

Suggested Citation

  • Shehabeldeen, Ali & Foda, Ahmed & Mohamed, Moataz, 2024. "A multi-stage optimization of battery electric bus transit with battery degradation," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011320
    DOI: 10.1016/j.energy.2024.131359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal scheduling for electric bus fleets based on dynamic programming approach by considering battery capacity fade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Oren E. Nahum & Yuval Hadas, 2020. "Multi-Objective Optimal Allocation of Wireless Bus Charging Stations Considering Costs and the Environmental Impact," Sustainability, MDPI, vol. 12(6), pages 1-20, March.
    3. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    4. Wellik, T.K. & Griffin, J.R. & Kockelman, K.M. & Mohamed, M., 2021. "Utility-transit nexus: Leveraging intelligently charged electrified transit to support a renewable energy grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    7. J. Barco & A. Guerra & L. Muñoz & N. Quijano, 2017. "Optimal Routing and Scheduling of Charge for Electric Vehicles: A Case Study," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, November.
    8. Alwesabi, Yaseen & Wang, Yong & Avalos, Raul & Liu, Zhaocai, 2020. "Electric bus scheduling under single depot dynamic wireless charging infrastructure planning," Energy, Elsevier, vol. 213(C).
    9. Brita Rohrbeck & Kilian Berthold & Felix Hettich, 2018. "Location Planning of Charging Stations for Electric City Buses Considering Battery Ageing Effects," Operations Research Proceedings, in: Natalia Kliewer & Jan Fabian Ehmke & Ralf Borndörfer (ed.), Operations Research Proceedings 2017, pages 701-707, Springer.
    10. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    11. Neil Quarles & Kara M. Kockelman & Moataz Mohamed, 2020. "Costs and Benefits of Electrifying and Automating Bus Transit Fleets," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    12. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    13. Wu, Yue & Huang, Zhiwu & Li, Dongjun & Li, Heng & Peng, Jun & Stroe, Daniel & Song, Ziyou, 2024. "Optimal battery thermal management for electric vehicles with battery degradation minimization," Applied Energy, Elsevier, vol. 353(PA).
    14. Alwesabi, Yaseen & Avishan, Farzad & Yanıkoğlu, İhsan & Liu, Zhaocai & Wang, Yong, 2022. "Robust strategic planning of dynamic wireless charging infrastructure for electric buses," Applied Energy, Elsevier, vol. 307(C).
    15. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    3. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    4. Foda, Ahmed & Mohamed, Moataz, 2024. "The impacts of optimization approaches on BEB system configuration in transit," Transport Policy, Elsevier, vol. 151(C), pages 12-23.
    5. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    6. He, Yi & Liu, Zhaocai & Zhang, Yiming & Song, Ziqi, 2023. "Time-dependent electric bus and charging station deployment problem," Energy, Elsevier, vol. 282(C).
    7. Wang, Yun & Zhou, Yu & Yan, Xuedong, 2024. "Reliable dynamic wireless charging infrastructure deployment problem for public transport services," European Journal of Operational Research, Elsevier, vol. 313(2), pages 747-766.
    8. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    9. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    10. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    11. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    12. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    14. Zeng, Ziling & Wang, Tingsong & Qu, Xiaobo, 2024. "En-route charge scheduling for an electric bus network: Stochasticity and real-world practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    15. Zhou, Yu & Ong, Ghim Ping & Meng, Qiang, 2023. "The road to electrification: Bus fleet replacement strategies," Applied Energy, Elsevier, vol. 337(C).
    16. Yiming Bie & Mingjie Hao & Mengzhu Guo, 2021. "Optimal Electric Bus Scheduling Based on the Combination of All-Stop and Short-Turning Strategies," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    17. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    18. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    19. Ji, Jinhua & Wang, Linhong & Yang, Menglin & Bie, Yiming & Hao, Mingjie, 2024. "Optimal deployment of dynamic wireless charging facilities for electric bus route considering stochastic travel times," Energy, Elsevier, vol. 289(C).
    20. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.