IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8509783.html
   My bibliography  Save this article

Optimal Routing and Scheduling of Charge for Electric Vehicles: A Case Study

Author

Listed:
  • J. Barco
  • A. Guerra
  • L. Muñoz
  • N. Quijano

Abstract

There are increasing interests in improving public transportation systems. One of the proposed strategies for this improvement is the use of Battery Electric Vehicles (BEVs). This approach leads to a new challenge as the BEVs’ routing is exposed to the traditional routing problems of conventional vehicles, as well as the particular requirements of the electrical technologies of BEVs. Examples of BEVs’ routing problems include the autonomy, battery degradation, and charge process. This work presents a differential evolution algorithm for solving an electric vehicle routing problem (EVRP). The formulation of the EVRP to be solved is based on a scheme to coordinate the BEVs’ routing and recharge scheduling, considering operation and battery degradation costs. A model based on the longitudinal dynamics equation of motion estimates the energy consumption of each BEV. A case study, consisting of an airport shuttle service scenario, is used to illustrate the proposed methodology. For this transport service, the BEV energy consumption is estimated based on experimentally measured driving patterns.

Suggested Citation

  • J. Barco & A. Guerra & L. Muñoz & N. Quijano, 2017. "Optimal Routing and Scheduling of Charge for Electric Vehicles: A Case Study," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, November.
  • Handle: RePEc:hin:jnlmpe:8509783
    DOI: 10.1155/2017/8509783
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/8509783.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/8509783.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/8509783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    2. Lu, Chung-Cheng & Diabat, Ali & Li, Yi-Ting & Yang, Yu-Min, 2022. "Combined passenger and parcel transportation using a mixed fleet of electric and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Vanny Minanda & Yun-Chia Liang & Angela H. L. Chen & Aldy Gunawan, 2024. "Application of an Improved Harmony Search Algorithm on Electric Vehicle Routing Problems," Energies, MDPI, vol. 17(15), pages 1-22, July.
    4. Danny García Sánchez & Alejandra Tabares & Lucas Teles Faria & Juan Carlos Rivera & John Fredy Franco, 2022. "A Clustering Approach for the Optimal Siting of Recharging Stations in the Electric Vehicle Routing Problem with Time Windows," Energies, MDPI, vol. 15(7), pages 1-19, March.
    5. Nicholas D. Kullman & Justin C. Goodson & Jorge E. Mendoza, 2021. "Electric Vehicle Routing with Public Charging Stations," Transportation Science, INFORMS, vol. 55(3), pages 637-659, May.
    6. Hung, Ying-Chao & PakHai Lok, Horace & Michailidis, George, 2022. "Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 526-541.
    7. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Shehabeldeen, Ali & Foda, Ahmed & Mohamed, Moataz, 2024. "A multi-stage optimization of battery electric bus transit with battery degradation," Energy, Elsevier, vol. 299(C).
    9. Mariusz Izdebski & Marianna Jacyna & Jerzy Bogdański, 2024. "Minimisation of the Energy Expenditure of Electric Vehicles in Municipal Service Companies, Taking into Account the Uncertainty of Charging Point Operation," Energies, MDPI, vol. 17(9), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8509783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.