IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp793-819.html
   My bibliography  Save this article

A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030

Author

Listed:
  • Zhou, Nan
  • Price, Lynn
  • Yande, Dai
  • Creyts, Jon
  • Khanna, Nina
  • Fridley, David
  • Lu, Hongyou
  • Feng, Wei
  • Liu, Xu
  • Hasanbeigi, Ali
  • Tian, Zhiyu
  • Yang, Hongwei
  • Bai, Quan
  • Zhu, Yuezhong
  • Xiong, Huawen
  • Zhang, Jianguo
  • Chrisman, Kate
  • Agenbroad, Josh
  • Ke, Yi
  • McIntosh, Robert
  • Mullaney, David
  • Stranger, Clay
  • Wanless, Eric
  • Wetzel, Daniel
  • Yee, Cyril
  • Franconi, Ellen

Abstract

As part of its Paris Agreement commitment, China pledged to peak carbon dioxide (CO2) emissions around 2030, striving to peak earlier, and to increase the non-fossil share of primary energy to 20% by 2030. Yet by the end of 2017, China emitted 28% of the world’s energy-related CO2 emissions, 76% of which were from coal use. How China can reinvent its energy economy cost-effectively while still achieving its commitments was the focus of a three-year joint research project completed in September 2016. Overall, this analysis found that if China follows a pathway in which it aggressively adopts all cost-effective energy efficiency and CO2 emission reduction technologies while also aggressively moving away from fossil fuels to renewable and other non-fossil resources, it is possible to not only meet its Paris Agreement Nationally Determined Contribution (NDC) commitments, but also to reduce its 2050 CO2 emissions to a level that is 42% below the country’s 2010 CO2 emissions. While numerous barriers exist that will need to be addressed through effective policies and programs in order to realize these potential energy use and emissions reductions, there are also significant local environmental (e.g., air quality), national and global environmental (e.g., mitigation of climate change), human health, and other unquantified benefits that will be realized if this pathway is pursued in China.

Suggested Citation

  • Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:793-819
    DOI: 10.1016/j.apenergy.2019.01.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919301424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    2. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    3. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & He, Xinhua & Liu, Rui & Liu, Shiguo & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2007. "A macroeconometric model of the Chinese economy," Economic Modelling, Elsevier, vol. 24(5), pages 814-822, September.
    4. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    5. ZhiDong, Li, 2003. "An econometric study on China's economy, energy and environment to the year 2030," Energy Policy, Elsevier, vol. 31(11), pages 1137-1150, September.
    6. Wang, Yanjia & Gu, Alun & Zhang, Aling, 2011. "Recent development of energy supply and demand in China, and energy sector prospects through 2030," Energy Policy, Elsevier, vol. 39(11), pages 6745-6759.
    7. Baoxing Qiu, 2014. "Thoughts on urbanization models from a global perspective," China Finance and Economic Review, Springer, vol. 2(1), pages 1-8, December.
    8. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    9. Mischke, Peggy & Karlsson, Kenneth B., 2014. "Modelling tools to evaluate China's future energy system – A review of the Chinese perspective," Energy, Elsevier, vol. 69(C), pages 132-143.
    10. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Multi-regional input-output model for regional energy requirements and CO2 emissions in China," Energy Policy, Elsevier, vol. 35(3), pages 1685-1700, March.
    11. Cervero, Robert & Murakami, Jin, 2008. "Rail + Property Development: A model of sustainable transit finance and urbanism," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6jx3k35x, Institute of Transportation Studies, UC Berkeley.
    12. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    13. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    14. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    15. Qiang Wang & Yang Zhang & Ke Yang & Lili Tan, 2009. "PREPARATION OF BIOACTIVE FILM ONTi6Al4V," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 775-779.
    16. Xu, Peng & Huang, Joe & Shen, Pengyuan & Ma, Xiaowen & Gao, Xuefei & Xu, Qiaolin & Jiang, Han & Xiang, Yong, 2013. "Commercial building energy use in six cities in Southern China," Energy Policy, Elsevier, vol. 53(C), pages 76-89.
    17. Yuanying Chi & Zhengquan Guo & Yuhua Zheng & Xingping Zhang, 2014. "Scenarios Analysis of the Energies’ Consumption and Carbon Emissions in China Based on a Dynamic CGE Model," Sustainability, MDPI, vol. 6(2), pages 1-26, January.
    18. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    19. Jane Haltmaier, 2013. "Challenges for the future of Chinese economic growth," International Finance Discussion Papers 1072, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
    2. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    4. Marcillo-Delgado, J.C. & Ortego, M.I. & Pérez-Foguet, A., 2019. "A compositional approach for modelling SDG7 indicators: Case study applied to electricity access," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 388-398.
    5. Long, Yin & Dong, Liang & Yoshida, Yoshikuni & Li, Zhaoling, 2018. "Evaluation of energy-related household carbon footprints in metropolitan areas of Japan," Ecological Modelling, Elsevier, vol. 377(C), pages 16-25.
    6. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    7. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    8. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    9. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    10. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    11. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    12. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    13. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    14. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    15. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    16. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    17. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    18. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    19. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    20. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:793-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.