IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics136403212030407x.html
   My bibliography  Save this article

Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling

Author

Listed:
  • Yang, Dewei
  • Liu, Dandan
  • Huang, Anmin
  • Lin, Jianyi
  • Xu, Lingxing

Abstract

A successful transformation from conventional to renewable energy can contribute to climate change mitigation and regional development. As the co-host city of the 2022 Winter Olympic Games and the only National Renewable Energy Demonstration Zone in China, Zhangjiakou urgently needs to transform its conventional energy-dependent industries. This paper establishes a Long-range Energy Alternatives Planning System (LEAP)-Zhang model to examine the environmental and socio-economic effects of renewable energy development in Zhangjiakou by projecting the energy consumption and associated greenhouse gas emissions by various sectors over the 2016–2050 period. Two scenarios are designed, i.e., the business as usual scenario (BAU) and the integrated scenario (INT) (including three sub-scenarios, i.e., renewable energy alternatives scenario (REA), industrial structure optimization scenario (ISO) and energy saving facility scenario (ESF)). Results indicate that under the INT scenario, Zhangjiakou's greenhouse gas emissions would peak in 2030 with 13.23% of lower energy consumption when compared with the BAU scenario. Compared with the conventional energy, renewable energy shows competitive advantages in terms of greenhouse gas reduction, employment opportunities and economic costs. The total number of employees would reach 0.15 million by 2050 under the INT scenario, 1.71 times more than that in the BAU scenario. Feasible low-carbon pathways and co-benefits strategies associated with industrial transformation and renewable energy substitution should be pursued in future actionable plans. Results found in this study could provide importance information for achieving renewable energy transformation and associated socio-environmental benefits within and beyond China.

Suggested Citation

  • Yang, Dewei & Liu, Dandan & Huang, Anmin & Lin, Jianyi & Xu, Lingxing, 2021. "Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s136403212030407x
    DOI: 10.1016/j.rser.2020.110116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212030407X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam & Harijan, Khanji & Walasai, Gordhan Das & Mondal, Md Alam Hossain & Sahin, Hasret, 2018. "Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis," Energy, Elsevier, vol. 165(PB), pages 512-526.
    2. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    3. Tsai, Miao-Shan & Chang, Ssu-Li, 2015. "Taiwan’s 2050 low carbon development roadmap: An evaluation with the MARKAL model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 178-191.
    4. Thepkhun, Panida & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko & Shrestha, Ram M., 2013. "Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures," Energy Policy, Elsevier, vol. 62(C), pages 561-572.
    5. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    6. Ciscar, Juan-Carlos & Saveyn, Bert & Soria, Antonio & Szabo, Laszlo & Van Regemorter, Denise & Van Ierland, Tom, 2013. "A comparability analysis of global burden sharing GHG reduction scenarios," Energy Policy, Elsevier, vol. 55(C), pages 73-81.
    7. Hong, Sungjun & Chung, Yanghon & Kim, Jongwook & Chun, Dongphil, 2016. "Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 549-559.
    8. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    9. Oliveira, C. & Coelho, D. & Pereira da Silva, P. & Antunes, C.H., 2013. "How many jobs can the RES-E sectors generate in the Portuguese context?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 444-455.
    10. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    11. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    12. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    13. Tourkolias, C. & Mirasgedis, S., 2011. "Quantification and monetization of employment benefits associated with renewable energy technologies in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2876-2886, August.
    14. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    15. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    16. Moreno, Blanca & López, Ana Jesús, 2008. "The effect of renewable energy on employment. The case of Asturias (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 732-751, April.
    17. Llera Sastresa, Eva & Usón, Alfonso Aranda & Bribián, Ignacio Zabalza & Scarpellini, Sabina, 2010. "Local impact of renewables on employment: Assessment methodology and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 679-690, February.
    18. Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
    19. Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
    20. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    21. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    22. Llera, E. & Scarpellini, S. & Aranda, A. & Zabalza, I., 2013. "Forecasting job creation from renewable energy deployment through a value-chain approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 262-271.
    23. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    24. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Siqiang, 2011. "Green economy and green jobs: Myth or reality? The case of China’s power generation sector," Energy, Elsevier, vol. 36(10), pages 5994-6003.
    25. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    26. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    27. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    28. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    29. Sooriyaarachchi, Thilanka M. & Tsai, I-Tsung & El Khatib, Sameh & Farid, Amro M. & Mezher, Toufic, 2015. "Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 653-668.
    30. Su, Xuanming & Zhou, Weisheng & Sun, Faming & Nakagami, Ken'Ichi, 2014. "Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030," Energy, Elsevier, vol. 66(C), pages 90-97.
    31. Bi, Jun & Zhang, Rongrong & Wang, Haikun & Liu, Miaomiao & Wu, Yi, 2011. "The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing," Energy Policy, Elsevier, vol. 39(9), pages 4785-4794, September.
    32. Ashina, Shuichi & Fujino, Junichi & Masui, Toshihiko & Ehara, Tomoki & Hibino, Go, 2012. "A roadmap towards a low-carbon society in Japan using backcasting methodology: Feasible pathways for achieving an 80% reduction in CO2 emissions by 2050," Energy Policy, Elsevier, vol. 41(C), pages 584-598.
    33. van der Zwaan, Bob & Cameron, Lachlan & Kober, Tom, 2013. "Potential for renewable energy jobs in the Middle East," Energy Policy, Elsevier, vol. 60(C), pages 296-304.
    34. Wesseh, Presley K. & Lin, Boqiang, 2016. "Output and substitution elasticities of energy and implications for renewable energy expansion in the ECOWAS region," Energy Policy, Elsevier, vol. 89(C), pages 125-137.
    35. Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki, 2000. "The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions," European Journal of Operational Research, Elsevier, vol. 122(2), pages 416-425, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjie Wang & Yuan Li & Yi Zhang, 2022. "Research on Carbon Emissions of Road Traffic in Chengdu City Based on a LEAP Model," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    2. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    3. Yayu Xiao & Honghua Yang & Yunlong Zhao & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni, 2022. "A Comprehensive Planning Method for Low-Carbon Energy Transition in Rapidly Growing Cities," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    4. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    5. Wu, Zemin & Wu, Qiuwei & Yu, Xianyu & Wang, Qunwei & Tan, Jin, 2024. "Exploring phase-out path of China's coal power plants with its dynamic impact on electricity balance," Energy Policy, Elsevier, vol. 187(C).
    6. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    7. Wambui, Valentine & Njoka, Francis & Muguthu, Joseph & Ndwali, Patrick, 2022. "Scenario analysis of electricity pathways in Kenya using Low Emissions Analysis Platform and the Next Energy Modeling system for optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    9. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "How would sustainable transformations in the electricity sector of megacities impact employment levels? A case study of Beijing," Energy, Elsevier, vol. 270(C).
    10. Rupu Yang & Min Wang & Mengxue Zhao & Xiangzhao Feng, 2022. "Synergic Benefits of Air Pollutant Reduction, CO 2 Emission Abatement, and Water Saving under the Goal of Achieving Carbon Emission Peak: The Case of Tangshan City, China," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    11. Miao, Ankang & Yuan, Yue & Wu, Han & Ma, Xin & Shao, Chenyu & Xiang, Sheng, 2024. "Pathway for China's provincial carbon emission peak: A case study of the Jiangsu Province," Energy, Elsevier, vol. 298(C).
    12. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    2. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.
    3. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    5. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    6. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    7. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    8. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    9. Dell’Anna, Federico, 2021. "Green jobs and energy efficiency as strategies for economic growth and the reduction of environmental impacts," Energy Policy, Elsevier, vol. 149(C).
    10. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    11. Sooriyaarachchi, Thilanka M. & Tsai, I-Tsung & El Khatib, Sameh & Farid, Amro M. & Mezher, Toufic, 2015. "Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 653-668.
    12. Omri, Emna & Chtourou, Nouri & Bazin, Damien, 2015. "Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1312-1323.
    13. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    14. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Cai, Wenjia & Mu, Yaqian & Wang, Can & Chen, Jining, 2014. "Distributional employment impacts of renewable and new energy–A case study of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1155-1163.
    16. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    17. Yi, Hongtao, 2014. "Green businesses in a clean energy economy: Analyzing drivers of green business growth in U.S. states," Energy, Elsevier, vol. 68(C), pages 922-929.
    18. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    19. Černý, Martin & Bruckner, Martin & Weinzettel, Jan & Wiebe, Kirsten & Kimmich, Christian & Kerschner, Christian & Hubacek, Klaus, 2024. "Global employment and skill level requirements for ‘Post-Carbon Europe’," Ecological Economics, Elsevier, vol. 216(C).
    20. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena, 2018. "The employment impact of private and public actions for energy efficiency: Evidence from European industries," Energy Policy, Elsevier, vol. 119(C), pages 250-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s136403212030407x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.