Experimental Investigation of Flow-Induced Motion and Energy Conversion for Two Rigidly Coupled Triangular Prisms Arranged in Tandem
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
- Shao, Nan & Lian, JiJian & Yan, Xiang & Liu, Fang & Wang, Xiaoqun, 2022. "Experimental study on energy conversion of flow induced motion for two triangular prisms in staggered arrangement," Energy, Elsevier, vol. 249(C).
- Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
- Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
- Jun Zhang & Fang Liu & Jijian Lian & Xiang Yan & Quanchao Ren, 2016. "Flow Induced Vibration and Energy Extraction of an Equilateral Triangle Prism at Different System Damping Ratios," Energies, MDPI, vol. 9(11), pages 1-22, November.
- Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
- Zhang, Baoshou & Wang, Keh-Han & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2018. "Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion," Energy, Elsevier, vol. 165(PA), pages 949-964.
- Zhu, Hongjun & Gao, Yue, 2017. "Vortex induced vibration response and energy harvesting of a marine riser attached by a free-to-rotate impeller," Energy, Elsevier, vol. 134(C), pages 532-544.
- Nan Shao & Jijian Lian & Guobin Xu & Fang Liu & Heng Deng & Quanchao Ren & Xiang Yan, 2018. "Experimental Investigation of Flow-Induced Motion and Energy Conversion of a T-Section Prism," Energies, MDPI, vol. 11(8), pages 1-23, August.
- Wang, Junlei & Zhang, Chengyun & Yurchenko, Daniil & Abdelkefi, Abdessattar & Zhang, Mingjie & Liu, Huadong, 2022. "Usefulness of inclined circular cylinders for designing ultra-wide bandwidth piezoelectric energy harvesters: Experiments and computational investigations," Energy, Elsevier, vol. 239(PB).
- Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Li, Boyang & Gu, Mengfan, 2019. "Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle," Energy, Elsevier, vol. 189(C).
- Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong & Li, Boyang, 2017. "Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement," Energy, Elsevier, vol. 133(C), pages 723-736.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liguo Fan & Guoqiang Liu & Xianjin Song & Ce Xiang & Jiacheng Wei & Hui Xia, 2024. "Simulation and Experiments on Optimization of Vortex-Induced Vibration Power Generation System Based on Side-by-Side Double Blunt Bodies," Energies, MDPI, vol. 17(21), pages 1-23, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
- Shao, Nan & Lian, JiJian & Yan, Xiang & Liu, Fang & Wang, Xiaoqun, 2022. "Experimental study on energy conversion of flow induced motion for two triangular prisms in staggered arrangement," Energy, Elsevier, vol. 249(C).
- Shao, Nan & Lian, Jijian & Liu, Fang & Yan, Xiang & Li, Peiyao, 2020. "Experimental investigation of flow induced motion and energy conversion for triangular prism," Energy, Elsevier, vol. 194(C).
- Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
- Zhang, Baoshou & Li, Boyang & Fu, Song & Mao, Zhaoyong & Ding, Wenjun, 2022. "Vortex-Induced Vibration (VIV) hydrokinetic energy harvesting based on nonlinear damping," Renewable Energy, Elsevier, vol. 195(C), pages 1050-1063.
- Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
- Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
- Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
- Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
- Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
- Qin, Weiyang & Deng, Wangzheng & Pan, Jianan & Zhou, Zhiyong & Du, Wenfeng & Zhu, Pei, 2019. "Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping," Energy, Elsevier, vol. 189(C).
- Lian, Jijian & Ran, Danjie & Yan, Xiang & Liu, Fang & Shao, Nan & Wang, Xiaoqun & Yang, Xu, 2023. "Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections," Energy, Elsevier, vol. 269(C).
- Chen, Weilin & Li, Yuzhu, 2024. "Energy harvesting performance of an elastically mounted semi-circular cylinder," Renewable Energy, Elsevier, vol. 229(C).
- Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Du, Wenfeng, 2021. "Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping," Energy, Elsevier, vol. 237(C).
- Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
- Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
- Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
More about this item
Keywords
triangular prism; tandem; flow-induced motion; sharp jump; gap ratio;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8190-:d:961557. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.