IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027944.html
   My bibliography  Save this article

Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion

Author

Listed:
  • Kuang, Zhenli
  • Zhang, Zhonghua
  • Liao, Weilin
  • Lin, Shijie
  • Wang, Kai
  • Zhang, Jiaqi
  • Kan, Junwu

Abstract

Wind-induced vibration piezoelectric energy harvesters have garnered significant interest in recent years as a means to power autonomous wireless sensor systems. A magnetic transfer piezoelectric wind energy harvester (MT-PWEH) is proposed and its durability, power generation performance and environmental adaptability are improved utilizing dual mode conversion. This MT-PWEH incorporated a downstream rectangular baffle, which facilitated the transition of the hollow cylinder from a traditional single vortex-induced vibration to a coupled vibration involving both vortex-induced vibration and galloping (i.e., the first vibration mode conversion). Besides, the vibration direction of the hollow cylinder was perpendicular to the vibration direction of the transducer, which achieved the purpose of limiting the amplitude (i.e., the second vibration mode conversion). The feasibility of MT-PWEH was confirmed through theoretical analysis, CFD simulation, fabrication and experiments. The experimental results demonstrated that the working characteristics of MT-PWEH were significantly affected by position and size of the baffle. Specifically, the ratio of the maximum cut-in wind speed of 12.5 m/s to the minimum cut-in wind speed of 1.2 m/s reached 10.4. Additionally, a maximum power output of 0.78 mW was recorded at 10 m/s with an optimal load resistance of 800 kΩ and 10 LEDs were drove successfully.

Suggested Citation

  • Kuang, Zhenli & Zhang, Zhonghua & Liao, Weilin & Lin, Shijie & Wang, Kai & Zhang, Jiaqi & Kan, Junwu, 2024. "Magnetic transfer piezoelectric wind energy harvester with dual vibration mode conversion," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027944
    DOI: 10.1016/j.energy.2024.133020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    3. Qin, Weiyang & Deng, Wangzheng & Pan, Jianan & Zhou, Zhiyong & Du, Wenfeng & Zhu, Pei, 2019. "Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping," Energy, Elsevier, vol. 189(C).
    4. Zhang, Mingjie & Abdelkefi, Abdessattar & Yu, Haiyan & Ying, Xuyong & Gaidai, Oleg & Wang, Junlei, 2021. "Predefined angle of attack and corner shape effects on the effectiveness of square-shaped galloping energy harvesters," Applied Energy, Elsevier, vol. 302(C).
    5. Wang, Junlei & Tang, Lihua & Zhao, Liya & Zhang, Zhien, 2019. "Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies," Energy, Elsevier, vol. 172(C), pages 1066-1078.
    6. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    7. Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
    8. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    9. Yu, Haiyan & Zhang, Mingjie, 2021. "Effects of side ratio on energy harvesting from transverse galloping of a rectangular cylinder," Energy, Elsevier, vol. 226(C).
    10. Usman, Muhammad & Hanif, Asad & Kim, In-Ho & Jung, Hyung-Jo, 2018. "Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum," Energy, Elsevier, vol. 153(C), pages 882-889.
    11. Kim, Eun Soo & Bernitsas, Michael M., 2016. "Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion," Applied Energy, Elsevier, vol. 170(C), pages 92-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    2. Kan, Junwu & Wang, Jin & Meng, Fanxu & He, Chenyang & Li, Shengjie & Wang, Shuyun & Zhang, Zhonghua, 2023. "A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle," Energy, Elsevier, vol. 262(PA).
    3. Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
    4. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    5. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    6. Zhang, Mingjie & Abdelkefi, Abdessattar & Yu, Haiyan & Ying, Xuyong & Gaidai, Oleg & Wang, Junlei, 2021. "Predefined angle of attack and corner shape effects on the effectiveness of square-shaped galloping energy harvesters," Applied Energy, Elsevier, vol. 302(C).
    7. Zhou, Zhiyong & Cao, Di & Huang, Haobo & Qin, Weiyang & Du, Wenfeng & Zhu, Pei, 2024. "Biomimetic swallowtail V-shaped attachments for enhanced low-speed wind energy harvesting by a galloping piezoelectric energy harvester," Energy, Elsevier, vol. 304(C).
    8. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    9. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    11. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    12. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    13. Li, Huaijun & Bernitsas, Christopher C. & Congpuong, Nipit & Bernitsas, Michael M. & Sun, Hai, 2024. "Experimental investigation on synergistic flow-induced oscillation of three rough tandem-cylinders in hydrokinetic energy conversion," Applied Energy, Elsevier, vol. 359(C).
    14. Le Scornec, Julien & Guiffard, Benoit & Seveno, Raynald & Le Cam, Vincent & Ginestar, Stephane, 2022. "Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 184(C), pages 551-563.
    15. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    16. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    17. Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
    18. Yu, Haiyan & Zhang, Mingjie, 2021. "Effects of side ratio on energy harvesting from transverse galloping of a rectangular cylinder," Energy, Elsevier, vol. 226(C).
    19. Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
    20. Tamimi, V. & Wu, J. & Esfehani, M.J. & Zeinoddini, M. & Naeeni, S.T.O., 2022. "Comparison of hydrokinetic energy harvesting performance of a fluttering hydrofoil against other Flow-Induced Vibration (FIV) mechanisms," Renewable Energy, Elsevier, vol. 186(C), pages 157-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.