IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003611.html
   My bibliography  Save this article

Dynamic microgrid formation for resilient distribution systems considering large-scale deployment of mobile energy resources

Author

Listed:
  • Shi, Wenlong
  • Liang, Hao
  • Bittner, Myrna

Abstract

Microgrids (MGs) are promising solutions to improve power distribution system (PDS) resilience against natural disasters. However, the existing MG formation approaches based on the linearized Distflow (LinDistflow) model always demand MG roots and their corresponding topologies. This can result in an increased number of variables and constraints in the optimization problem, and deteriorate their computational performance. To this end, an adaptive LinDistflow model is proposed based on the single commodity flow model in graph theory in this paper. Specifically, we show that active and reactive powers can be represented as commodities, which are sent from one node to each of its adjacent nodes in the graph. Then, the power flow and nodal voltage calculation based on the commodity flow only requires adjacent node information of the original topology rather than various MG topologies caused by the dynamic deployment of mobile energy resources (MERs). Furthermore, by incorporating the adaptive LinDistflow model as constraints, a dynamic MG formation approach is proposed for resilient load restoration considering large-scale MER deployment. The problem is formulated as a mixed-integer nonlinear programming problem (MINLP). A linearization technique is proposed based on the propositional logic constraints. It employs the propositional logic that partitions the solution space into two separated regions. Accordingly, the region that the solution lies in can be selected linearly. The effectiveness of the proposed approach is demonstrated based on the IEEE 37-Node, 123-Node and 8500-Node Test Feeders.

Suggested Citation

  • Shi, Wenlong & Liang, Hao & Bittner, Myrna, 2024. "Dynamic microgrid formation for resilient distribution systems considering large-scale deployment of mobile energy resources," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003611
    DOI: 10.1016/j.apenergy.2024.122978
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yueqing & Qian, Tong & Li, Weiwei & Zhao, Wei & Tang, Wenhu & Chen, Xingyu & Yu, Zeyuan, 2023. "Mobile energy storage systems with spatial–temporal flexibility for post-disaster recovery of power distribution systems: A bilevel optimization approach," Energy, Elsevier, vol. 282(C).
    2. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    3. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Hossain, M.J., 2022. "Active distribution system resilience quantification and enhancement through multi-microgrid and mobile energy storage," Applied Energy, Elsevier, vol. 311(C).
    4. Global Partnership on Output-Based Aid, 2016. "Energy Sector Experience of Output-Based Aid," World Bank Publications - Reports 24687, The World Bank Group.
    5. Johannes Steinbrecher, 2016. "Infrastructure and Energy Supply in Croatia," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(01), pages 56-59, April.
    6. Unknown, 2016. "Water Energy and Food Security Nexus," Conference Proceedings 253272, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    7. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    8. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    9. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    10. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zenghui & Zhou, Kaile & Yang, Shanlin, 2024. "A post-disaster load supply restoration model for urban integrated energy systems based on multi-energy coordination," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
    2. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    4. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    6. Cinthia Soto Golcher & Ingrid J Visseren-Hamakers, 2018. "Framing and integration in the global forest, agriculture and climate change nexus," Environment and Planning C, , vol. 36(8), pages 1415-1436, December.
    7. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    8. Joachim von Braun, 2016. "Policy Nook: “Expanding Water Modeling to Serve Real Policy Needs”," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-9, December.
    9. Mukherjee, Shilpi & Dhingra, Tarun & Sengupta, Anirban, 2017. "Status of Electricity Act, 2003: A systematic review of literature," Energy Policy, Elsevier, vol. 102(C), pages 237-248.
    10. Yu, Hyun Jin Julie, 2017. "Virtuous cycle of solar photovoltaic development in new regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1357-1366.
    11. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    12. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. World Bank, 2020. "Global Economic Prospects, June 2020," World Bank Publications - Books, The World Bank Group, number 33748.
    14. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Cholho Song & Sea Jin Kim & Jooyeon Moon & Soo Jeong Lee & Wona Lee & Nahui Kim & Sonam Wangyel Wang & Woo-Kyun Lee, 2017. "Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    16. Ribas, Aline & Lucena, André F.P. & Schaeffer, Roberto, 2017. "Bridging the energy divide and securing higher collective well-being in a climate-constrained world," Energy Policy, Elsevier, vol. 108(C), pages 435-450.
    17. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    18. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Mark Elder & Magnus Bengtsson & Lewis Akenji, 2016. "An Optimistic Analysis of the Means of Implementation for Sustainable Development Goals: Thinking about Goals as Means," Sustainability, MDPI, vol. 8(9), pages 1-24, September.
    20. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.