IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017541.html
   My bibliography  Save this article

Three-stage resilience-oriented active distribution systems operation after natural disasters

Author

Listed:
  • Khaledi, Arian
  • Saifoddin, Amirali

Abstract

Increasing energy demand and the industrialization of communities have been the leading causes of climate change. As a result, natural disasters have increased blackouts in power systems. Climate change mitigation should be a global goal of communities. Since natural disaster occurrence has risen recently, rapid system restoration after natural disasters is essential. Mitigation of global warming is inextricably linked to the mechanisms and architecture of energy systems. Energy resilience is a multi-dimensional solution to this problem. In this research, resilient strategies for dealing with natural disasters have been examined. Implementing distributed energy resources (DERs), smart distribution networks, and defining load priority based on consumers’ preferences have made a viable solution to the post-disaster operation. Previous efforts cared more about the generation and transmission sectors. This study focused on active distribution systems (ADSs) because distribution systems, as a vital part of energy systems, have not sufficiently contributed to crisis management. A framework for resilience enhancement to smartening conventional distribution systems against natural disasters has been proposed. Three-stage socio-technical optimization was investigated, including optimal allocation of battery storage systems (BESSs), intentional islanding, and optimal power flow (OPF) in MATLAB and DIgSILENT. This optimization presents a decision-making tool for distribution system operators to quickly prepare the system against natural disasters. By applying eight scenarios in the proposed system, in the best scenario (CS4), the recovered power value (RPV) has increased from 38% to more than 99% (more than 61% increase in the resilience index). The amount of supplied load increased from 56% to 92%. Furthermore, prioritizing crucial consumers and reconfiguration are two primary crisis management tools. This approach creates a solid ground for avoiding the social consequences of natural disasters like electrocution and power outages of priority consumers. Failure to apply these two techniques would result in a 21% reduction in the RPV.

Suggested Citation

  • Khaledi, Arian & Saifoddin, Amirali, 2023. "Three-stage resilience-oriented active distribution systems operation after natural disasters," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017541
    DOI: 10.1016/j.energy.2023.128360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehrjerdi, Hasan & Mahdavi, Sajad & Hemmati, Reza, 2021. "Resilience maximization through mobile battery storage and diesel DG in integrated electrical and heating networks," Energy, Elsevier, vol. 237(C).
    2. Jun Wang & Xiaodong Zheng & Nengling Tai & Wei Wei & Lingfang Li, 2019. "Resilience-Oriented Optimal Operation Strategy of Active Distribution Network," Energies, MDPI, vol. 12(17), pages 1-15, September.
    3. Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco & Aguado, José A., 2023. "An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster," Applied Energy, Elsevier, vol. 333(C).
    4. Khalili, Reza & Khaledi, Arian & Marzband, Mousa & Nematollahi, Amin Foroughi & Vahidi, Behrooz & Siano, Pierluigi, 2023. "Robust multi-objective optimization for the Iranian electricity market considering green hydrogen and analyzing the performance of different demand response programs," Applied Energy, Elsevier, vol. 334(C).
    5. Roege, Paul E. & Collier, Zachary A. & Mancillas, James & McDonagh, John A. & Linkov, Igor, 2014. "Metrics for energy resilience," Energy Policy, Elsevier, vol. 72(C), pages 249-256.
    6. Salman, Abdullahi M. & Li, Yue & Stewart, Mark G., 2015. "Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 319-333.
    7. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).
    10. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
    2. Ebrahimi, Mahoor & Ebrahimi, Mahan & Shafie-khah, Miadreza & Laaksonen, Hannu, 2024. "EV-observing distribution system management considering strategic VPPs and active & reactive power markets," Applied Energy, Elsevier, vol. 364(C).
    3. Hamed Binqadhi & Waleed M. Hamanah & Md Shafiullah & Md Shafiul Alam & Mohammad M. AlMuhaini & Mohammad A. Abido, 2024. "A Comprehensive Survey on Advancement and Challenges of DC Microgrid Protection," Sustainability, MDPI, vol. 16(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Yang, Lijun & Jiang, Yaning & Chong, Zhenxiao, 2023. "Optimal scheduling of electro-thermal system considering refined demand response and source-load-storage cooperative hydrogen production," Renewable Energy, Elsevier, vol. 215(C).
    3. Jin, Haowei & Guo, Jue & Tang, Lei & Du, Pei, 2024. "Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix," Energy, Elsevier, vol. 286(C).
    4. Xi Ye & Gan Li & Tong Zhu & Lei Zhang & Yanfeng Wang & Xiang Wang & Hua Zhong, 2023. "A Dispatching Method for Large-Scale Interruptible Load and Electric Vehicle Clusters to Alleviate Overload of Interface Power Flow," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    5. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Zhang, Pan & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos & Alharthi, Yahya Z. & Safaraliev, Murodbek, 2024. "An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers," Applied Energy, Elsevier, vol. 363(C).
    7. Lerch, Philipp & Scheller, Fabian & Reichelt, David G. & Menzel, Katharina & Bruckner, Thomas, 2024. "Electricity cost and CO2 savings potential for chlor-alkali electrolysis plants: Benefits of electricity price dependent demand response," Applied Energy, Elsevier, vol. 355(C).
    8. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    9. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Timothy Fraser & Lily Cunningham & Amos Nasongo, 2021. "Build Back Better? Effects of Crisis on Climate Change Adaptation Through Solar Power in Japan and the United States," Global Environmental Politics, MIT Press, vol. 21(1), pages 54-75, Winter.
    11. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Carvallo, Juan Pablo & Frick, Natalie Mims & Schwartz, Lisa, 2022. "A review of examples and opportunities to quantify the grid reliability and resilience impacts of energy efficiency," Energy Policy, Elsevier, vol. 169(C).
    13. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    17. Kurz, Konstantin & Bock, Carolin & Knodt, Michèle & Stöckl, Anna, 2022. "A Friend in Need Is a Friend Indeed? Analysis of the Willingness to Share Self-Produced Electricity During a Long-lasting Power Outage," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136773, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    19. Ding, Yueting & Chen, Sai & Zheng, Yilei & Chai, Shanglei & Nie, Rui, 2022. "Resilience assessment of China's natural gas system under supply shortages: A system dynamics approach," Energy, Elsevier, vol. 247(C).
    20. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.