IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008077.html
   My bibliography  Save this article

Investigating the potential of a waste-derived additive for enhancing coal combustion efficiency and environmental sustainability in a circular economy

Author

Listed:
  • Czajka, Krzysztof
  • Krochmalny, Krystian
  • Kisiela-Czajka, Anna
  • Ostrycharczyk, Michał
  • Czerep, Michał
  • Tkaczuk-Serafin, Monika
  • Baranowski, Marcin
  • Łukasz, Niedźwiecki
  • Halina, Pawlak-Kruczek
  • Kamila, Jóźwiak
  • Holovko-Kamoshenkova, Oksana M.
  • Provalov, Oleksii
  • Cherniavskyi, Mykola

Abstract

This study examines the impact of a waste-derived additive from alumina and shale oil production on the performance of coal combustion. The effects of individual additive components were investigated under oxidant-limited and oxidizing conditions using the isothermal flow reactor (IFR) equipped with gas analysers. The raw materials, as well as fly chars/ashes derived from the IFR, were characterized using standard physicochemical analysis, oxide analysis, oxygen functional group determination, the ash fusion test, thermogravimetry, scanning electron microscopy and energy dispersive X-ray spectroscopy. Results from experiments conducted under oxidant-limited conditions demonstrated that the analysed additive, at a 1% share, increased hydrogen content in char by over 3.5 times (from 600 ppm to 2160 ppm) and enhanced methane conversion by nearly 20%. Under oxidizing conditions, the additive reduced unburned carbon loss by approximately 50%, emissions of NOx from 400-460 ppm to 340–390 ppm and SO2 from 1410-1475 ppm to 1325–1410 ppm. The study emphasized the influence of moisture on thermochemical processes, confirming that a certain amount of water vapour accelerates the conversion of H2, SO2, and NOX. The analysis supported the commercial utilization of the additive from economic, environmental, and operational standpoints.

Suggested Citation

  • Czajka, Krzysztof & Krochmalny, Krystian & Kisiela-Czajka, Anna & Ostrycharczyk, Michał & Czerep, Michał & Tkaczuk-Serafin, Monika & Baranowski, Marcin & Łukasz, Niedźwiecki & Halina, Pawlak-Kruczek &, 2024. "Investigating the potential of a waste-derived additive for enhancing coal combustion efficiency and environmental sustainability in a circular economy," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008077
    DOI: 10.1016/j.energy.2024.131035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lambert, Jean & Sorin, Mikhail & Paris, Jean, 1997. "Analysis of oxygen-enriched combustion for steam methane reforming (SMR)," Energy, Elsevier, vol. 22(8), pages 817-825.
    2. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    3. Kirill Larionov & Konstantin Slyusarskiy & Svyatoslav Tsibulskiy & Anton Tolokolnikov & Ilya Mishakov & Yury Bauman & Aleksey Vedyagin & Alexander Gromov, 2020. "Effect of Cu(NO 3 ) 2 and Cu(CH 3 COO) 2 Activating Additives on Combustion Characteristics of Anthracite and Its Semi-Coke," Energies, MDPI, vol. 13(22), pages 1-14, November.
    4. Kisiela-Czajka, Anna M., 2022. "Adsorption behaviour of SO2 molecules on unburned carbon from lignite fly ash in the context of developing commercially applicable environmental carbon adsorbent," Energy, Elsevier, vol. 250(C).
    5. Lauri Loo & Alar Konist & Dmitri Neshumayev & Tõnu Pihu & Birgit Maaten & Andres Siirde, 2018. "Ash and Flue Gas from Oil Shale Oxy-Fuel Circulating Fluidized Bed Combustion," Energies, MDPI, vol. 11(5), pages 1-12, May.
    6. Kisiela, Anna M. & Czajka, Krzysztof M. & Moroń, Wojciech & Rybak, Wiesław & Andryjowicz, Czesław, 2016. "Unburned carbon from lignite fly ash as an adsorbent for SO2 removal," Energy, Elsevier, vol. 116(P3), pages 1454-1463.
    7. Gong, Xuzhong & Guo, Zhancheng & Wang, Zhi, 2010. "Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by Differential Thermal Analysis (DTA)," Energy, Elsevier, vol. 35(2), pages 506-511.
    8. Tomasz Hardy & Amit Arora & Halina Pawlak-Kruczek & Wojciech Rafajłowicz & Jerzy Wietrzych & Łukasz Niedźwiecki & Vishwajeet & Krzysztof Mościcki, 2021. "Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review," Energies, MDPI, vol. 14(21), pages 1-15, November.
    9. Pawlak-Kruczek, Halina & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Zgóra, Jacek, 2015. "Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere)," Energy, Elsevier, vol. 92(P1), pages 40-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Qiu, K. & Hayden, A.C.S., 2009. "Increasing the efficiency of radiant burners by using polymer membranes," Applied Energy, Elsevier, vol. 86(3), pages 349-354, March.
    3. Gyeong-Min Kim & Jong-Pil Kim & Kevin Yohanes Lisandy & Chung-Hwan Jeon, 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite," Energies, MDPI, vol. 10(9), pages 1-14, September.
    4. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    5. Larionov, K.B. & Mishakov, I.V. & Gorshkov, A.S. & Kaltaev, A.Zh. & Asilbekov, A.K. & Gubin, A.V. & Slyusarsky, K.V. & Gerasimov, R.D. & Vedyagin, A.A., 2023. "Activation of the combustion of low-reactivity solid fuels with metal-rolling production waste," Energy, Elsevier, vol. 278(PB).
    6. Kirill Larionov & Konstantin Slyusarskiy & Svyatoslav Tsibulskiy & Anton Tolokolnikov & Ilya Mishakov & Yury Bauman & Aleksey Vedyagin & Alexander Gromov, 2020. "Effect of Cu(NO 3 ) 2 and Cu(CH 3 COO) 2 Activating Additives on Combustion Characteristics of Anthracite and Its Semi-Coke," Energies, MDPI, vol. 13(22), pages 1-14, November.
    7. Ruan, Renhui & Wang, Guan & Li, Shuaishuai & Wang, Min & Lin, Hui & Tan, Houzhang & Wang, Xuebin & Liu, Feng, 2024. "The effect of alkali and alkaline earth metals (AAEMs) on combustion and PM formation during oxy-fuel combustion of coal rich in AAEMs," Energy, Elsevier, vol. 293(C).
    8. Bělohradský, Petr & Skryja, Pavel & Hudák, Igor, 2014. "Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics," Energy, Elsevier, vol. 75(C), pages 116-126.
    9. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    10. Krzysztof M. Czajka, 2021. "Gasification of Coal by CO 2 : The Impact of the Heat Transfer Limitation on the Progress, Reaction Rate and Kinetics of the Process," Energies, MDPI, vol. 14(17), pages 1-22, September.
    11. Sładek, Sławomir & Katelbach-Woźniak, Anna & Adamczyk, Wojciech P. & Klimanek, Adam & Korus, Agnieszka & Szlęk, Andrzej, 2020. "Procedure for in-fly particle temperature detection under combustion conditions," Energy, Elsevier, vol. 191(C).
    12. Saia, Artjom & Neshumayev, Dmitri & Hazak, Aaro & Sander, Priit & Järvik, Oliver & Konist, Alar, 2022. "Techno-economic assessment of CO2 capture possibilities for oil shale power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Lu, Yang & Wang, Ying & Zhang, Jing & Xu, Ying & Li, Guoqiang & Zhang, Yongfa, 2019. "Investigation on the catalytic effect of AAEMs in Zhundong coal on the combustion characteristics of Changji oil shale and its kinetics," Energy, Elsevier, vol. 178(C), pages 89-100.
    14. Li, Zhengang & Guo, Zhancheng & Gong, Xuzhong & Tang, Huiqing, 2013. "Kinetic characteristics of pulverized coal combustion in the two-phase flow," Energy, Elsevier, vol. 55(C), pages 585-593.
    15. Kisiela-Czajka, Anna M., 2022. "Adsorption behaviour of SO2 molecules on unburned carbon from lignite fly ash in the context of developing commercially applicable environmental carbon adsorbent," Energy, Elsevier, vol. 250(C).
    16. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    17. Aaron Fuller & Jörg Maier & Emmanouil Karampinis & Jana Kalivodova & Panagiotis Grammelis & Emmanuel Kakaras & Günter Scheffknecht, 2018. "Fly Ash Formation and Characteristics from (co-)Combustion of an Herbaceous Biomass and a Greek Lignite (Low-Rank Coal) in a Pulverized Fuel Pilot-Scale Test Facility," Energies, MDPI, vol. 11(6), pages 1-38, June.
    18. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    19. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Karuana, Feri & Sarjono, & Prabowo, & Setiyawan, Atok & Darmawan, Arif & Aziz, Muhammad & Vuthaluru, Hari & Hariana, Hariana, 2024. "Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal," Energy, Elsevier, vol. 292(C).
    20. Wang, Pengqian & Wang, Chang'an & Yuan, Maobo & Wang, Chaowei & Zhang, Jinping & Du, Yongbo & Tao, Zichen & Che, Defu, 2020. "Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.