Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128115
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
- Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
- Ibrahimoglu, Beycan & Yilmazoglu, M. Zeki & Cucen, Ahmet, 2016. "Numerical modeling of repowering of a thermal power plant boiler using plasma combustion systems," Energy, Elsevier, vol. 103(C), pages 38-48.
- Zhang, Teng & Zhang, Jingfeng & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Up-rotating plasma gasifier for waste treatment to produce syngas and intensified by carbon dioxide," Energy, Elsevier, vol. 270(C).
- Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).
- Mazzoni, Luca & Janajreh, Isam & Elagroudy, Sherien & Ghenai, Chaouki, 2020. "Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge," Energy, Elsevier, vol. 196(C).
- Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
- Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
- Ismail, Tamer M. & Monteiro, Eliseu & Ramos, Ana & El-Salam, M. Abd & Rouboa, Abel, 2019. "An Eulerian model for forest residues gasification in a plasma gasifier," Energy, Elsevier, vol. 182(C), pages 1069-1083.
- Paulino, Regina Franciélle Silva & Essiptchouk, Alexei Mikhailovich & Costa, Lucas Pamplona Cardozo & Silveira, José Luz, 2022. "Thermodynamic analysis of biomedical waste plasma gasification," Energy, Elsevier, vol. 244(PA).
- Paulino, Regina Franciélle Silva & Essiptchouk, Alexei Mikhailovich & Silveira, José Luz, 2020. "The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: Thermodynamic and economic issues," Energy, Elsevier, vol. 199(C).
- Pawlak-Kruczek, Halina & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Zgóra, Jacek, 2015. "Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere)," Energy, Elsevier, vol. 92(P1), pages 40-46.
- Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Kexin & Wang, Yangyang & Wu, Qiming & Zhang, Jifu & Zhou, Yaru & Xu, Zaifeng & Zhu, Zhaoyou & Qi, Jianguang & Wang, Yinglong & Cui, Peizhe, 2024. "Thermodynamic analysis of a plasma co-gasification process for hydrogen production using sludge and food waste as mixed raw materials," Renewable Energy, Elsevier, vol. 222(C).
- Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Mamedov, Bolat, 2023. "The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances," Energy, Elsevier, vol. 277(C).
- Wu, Haoran & Chen, Heng & Fan, Lanxin & Pan, Peiyuan & Xu, Gang & Wu, Lining, 2024. "Performance analysis of a novel co-generation system integrating a small modular reactor and multiple hydrogen production equipment considering peak shaving," Energy, Elsevier, vol. 302(C).
- Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
- Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
- Chen, Handing & Guo, Shunzhi & Song, Xudong & He, Tianbiao, 2024. "Design and evaluation of a municipal solid waste incineration power plant integrating with absorption heat pump," Energy, Elsevier, vol. 294(C).
- Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
- Caferra, Rocco & D'Adamo, Idiano & Morone, Piergiuseppe, 2023. "Wasting energy or energizing waste? The public acceptance of waste-to-energy technology," Energy, Elsevier, vol. 263(PE).
- Zhang, Teng & Zhang, Jingfeng & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Up-rotating plasma gasifier for waste treatment to produce syngas and intensified by carbon dioxide," Energy, Elsevier, vol. 270(C).
- Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
- Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).
- Xu, Wenwu & Zhang, Jifu & Wu, Qiming & Wang, Yangyang & Zhao, Wenxuan & Zhu, Zhaoyou & Wang, Yinglong & Cui, Peizhe, 2024. "Energy, exergy and economic (3E) analyses of a novel DME-power polygeneration system with CO2 capture based on biomass gasification," Applied Energy, Elsevier, vol. 374(C).
- Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
- Xue, Xiaojun & Li, Yang & Liu, Shugen & Xu, Gang & Zheng, Lixing, 2024. "Performance analysis of a new compressed air energy storage system coupled with the municipal solid waste power generation systems," Energy, Elsevier, vol. 304(C).
- Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
- Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
- Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
- Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
- Ismail, Tamer M. & Kobayashi, Yasunori & Yoshikawa, Kunio & Lu, Ding & Kobori, Takahiro & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2020. "Numerical investigation on the effect of electron injected air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 269(C).
- Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
More about this item
Keywords
CFD; Plasma combustion; Coal; Char burnout;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223015098. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.