IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924015587.html
   My bibliography  Save this article

Electrochemical model boosting accurate prediction of calendar life for commercial LiFePO4|graphite cells by combining solid electrolyte interface side reactions

Author

Listed:
  • Chen, Long
  • Ding, Shicong
  • Wang, Li
  • Zhu, Feng
  • Zhu, Xiayu
  • Zhang, Songtong
  • Dai, Haifeng
  • He, Xiangming
  • Cao, Gaoping
  • Qiu, Jinyi
  • Zhang, Hao

Abstract

The lithium-ion battery (LIB) is considered an ideal next-generation energy storage device owing to its high safety, high energy density, and low cost. Calendar loss of LIBs is the most important element in the long-term degradation of batteries. However, the calendar life is difficult to measure precisely because of the uncertain and overlong storage years. Consequently, accurately predicting the calendar life of LIBs is a key but challenging issue. In this work, a calendar life prediction model is developed for commercial large-capacity LiFePO4|graphite LIBs based on the pseudo-two-dimensional (P2D) electrochemical model integrated with solid electrolyte interface (SEI) growth side reactions and an empirical degradation rate model for reliability research. The excellent agreement between the model and the experimental storage data over a wide range of temperatures (−40 °C ∼ 70 °C) and SOCs demonstrates the high-fidelity of the model. The established model is sufficiently generic to predict the storage aging of LIBs over a long period of years. On the basis of the verified model, the impact of graphite particle radius distribution on the calendar loss of Li-ion batteries throughout a broad temperature range is investigated. This modeling work contributes to an improved understanding of the calendar loss behavior of LIBs and provides valuable guidance for future battery design optimization.

Suggested Citation

  • Chen, Long & Ding, Shicong & Wang, Li & Zhu, Feng & Zhu, Xiayu & Zhang, Songtong & Dai, Haifeng & He, Xiangming & Cao, Gaoping & Qiu, Jinyi & Zhang, Hao, 2024. "Electrochemical model boosting accurate prediction of calendar life for commercial LiFePO4|graphite cells by combining solid electrolyte interface side reactions," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015587
    DOI: 10.1016/j.apenergy.2024.124175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Hoog, Joris & Timmermans, Jean-Marc & Ioan-Stroe, Daniel & Swierczynski, Maciej & Jaguemont, Joris & Goutam, Shovon & Omar, Noshin & Van Mierlo, Joeri & Van Den Bossche, Peter, 2017. "Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation," Applied Energy, Elsevier, vol. 200(C), pages 47-61.
    2. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2015. "Performance comparison of four lithium–ion battery technologies under calendar aging," Energy, Elsevier, vol. 84(C), pages 542-550.
    3. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    4. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Qian, Cheng & Xu, Binghui & Xia, Quan & Ren, Yi & Sun, Bo & Wang, Zili, 2023. "SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model," Applied Energy, Elsevier, vol. 336(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dwivedi, Shalini & Akula, Aparna & Pecht, Michael, 2024. "Predictive analytics for prolonging lithium-ion battery lifespan through informed storage conditions," Energy, Elsevier, vol. 308(C).
    2. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    4. Mathieu, Romain & Baghdadi, Issam & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2017. "D-optimal design of experiments applied to lithium battery for ageing model calibration," Energy, Elsevier, vol. 141(C), pages 2108-2119.
    5. Peng, Qiao & Li, Wei & Fowler, Michael & Chen, Tao & Jiang, Wei & Liu, Kailong, 2024. "Battery calendar degradation trajectory prediction: Data-driven implementation and knowledge inspiration," Energy, Elsevier, vol. 294(C).
    6. Haber, Marc & Azaïs, Philippe & Genies, Sylvie & Raccurt, Olivier, 2023. "Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage," Applied Energy, Elsevier, vol. 343(C).
    7. Jia Guo & Yaqi Li & Kjeld Pedersen & Daniel-Ioan Stroe, 2021. "Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview," Energies, MDPI, vol. 14(17), pages 1-22, August.
    8. Joris De Hoog & Joris Jaguemont & Mohamed Abdel-Monem & Peter Van Den Bossche & Joeri Van Mierlo & Noshin Omar, 2018. "Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging," Energies, MDPI, vol. 11(4), pages 1-15, March.
    9. Ma, Qianli & Wei, Wei & Mei, Shengwei, 2024. "Health-aware coordinate long-term and short-term operation for BESS in energy and frequency regulation markets," Applied Energy, Elsevier, vol. 356(C).
    10. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    11. Juan Antonio López-Villanueva & Pablo Rodríguez-Iturriaga & Luis Parrilla & Salvador Rodríguez-Bolívar, 2023. "Application of Variable-Order Fractional Calculus to the Modeling of Calendar Aging in Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-18, March.
    12. Yan, Dongxiang & Lu, Languang & Li, Zhe & Feng, Xuning & Ouyang, Minggao & Jiang, Fachao, 2016. "Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis," Applied Energy, Elsevier, vol. 179(C), pages 1123-1130.
    13. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Rakshith Subramanya & Matti Yli-Ojanperä & Seppo Sierla & Taneli Hölttä & Jori Valtakari & Valeriy Vyatkin, 2021. "A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves," Energies, MDPI, vol. 14(5), pages 1-23, February.
    15. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    16. Jin, Haiyan & Ru, Rui & Cai, Lei & Meng, Jinhao & Wang, Bin & Peng, Jichang & Yang, Shengxiang, 2025. "A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries," Applied Energy, Elsevier, vol. 377(PD).
    17. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    19. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    20. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.