IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005097.html
   My bibliography  Save this article

Energy and exergy analysis of a novel pumped hydro compressed air energy storage system

Author

Listed:
  • Yang, Biao
  • Li, Deyou
  • Fu, Xiaolong
  • Wang, Hongjie
  • Gong, Ruzhi

Abstract

Many pumped hydro compressed air energy storage systems suffer from defects owing to large head variations in the hydraulic machinery. To solve this problem, this study proposes a novel pumped hydro compressed air energy storage system and analyzes its operational, energy, and exergy performances. First, the composition and operating principles of the system are analyzed, and energy and exergy models are developed for each module. Second, the operational characteristics of each module during the charging and discharging processes are analyzed. Finally, the energy and exergy performances of the system in single- and multi-cycle charging and discharging processes are revealed. The results show that the water pressure potential energy transfer module (module 2) effectively converts the pressure variation of nearly 1.6 MPa in the air storage tank to a head variation of 58.5 m during pumping and 48.2 m during power generation of the pumped storage unit. The electrical energy waste and exergy losses in module 1 are the highest, reaching 39.0% and 53.3%, respectively. After a single cycle, the efficiency, exergy efficiency, and energy storage density of the proposed system reach 59.0%, 70.1%, and 0.255 kW h/m3, respectively. After multiple cycles, the average efficiency increases to 62.5%.

Suggested Citation

  • Yang, Biao & Li, Deyou & Fu, Xiaolong & Wang, Hongjie & Gong, Ruzhi, 2024. "Energy and exergy analysis of a novel pumped hydro compressed air energy storage system," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005097
    DOI: 10.1016/j.energy.2024.130737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camargos, Tomás P.L. & Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2018. "Experimental study of a PH-CAES system: Proof of concept," Energy, Elsevier, vol. 165(PA), pages 630-638.
    2. Ortego Sampedro, Egoi & Dazin, Antoine & Colas, Frédéric & Roussette, Olivier & Coutier-Delgosha, Olivier & Caignaert, Guy, 2021. "Multistage radial flow pump - turbine for compressed air energy storage: experimental analysis and modeling," Applied Energy, Elsevier, vol. 289(C).
    3. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Liu, Zhan & Yang, Xuqing & Liu, Xu & Wang, Wenbin & Yang, Xiaohu, 2021. "Evaluation of a trigeneration system based on adiabatic compressed air energy storage and absorption heat pump: Thermodynamic analysis," Applied Energy, Elsevier, vol. 300(C).
    5. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    6. Kim, Y.M. & Shin, D.G. & Favrat, D., 2011. "Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis," Energy, Elsevier, vol. 36(10), pages 6220-6233.
    7. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Gluesenkamp, Kyle R. & Abdelaziz, Omar & Jackson, Roderick K. & Daniel, Claus & Graham, Samuel & Momen, Ayyoub M., 2016. "Thermal analysis of near-isothermal compressed gas energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 948-960.
    8. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    9. Qin, Chao & Loth, Eric, 2014. "Liquid piston compression efficiency with droplet heat transfer," Applied Energy, Elsevier, vol. 114(C), pages 539-550.
    10. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    11. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    12. Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).
    13. Huanran Wang & Liqin Wang & Xinbing Wang & Erren Yao, 2013. "A Novel Pumped Hydro Combined with Compressed Air Energy Storage System," Energies, MDPI, vol. 6(3), pages 1-14, March.
    14. Julian D. Hunt & Edward Byers & Yoshihide Wada & Simon Parkinson & David E. H. J. Gernaat & Simon Langan & Detlef P. Vuuren & Keywan Riahi, 2020. "Global resource potential of seasonal pumped hydropower storage for energy and water storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    15. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).
    16. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
    17. Li, Ruixiong & Tao, Rui & Yao, Erren & Chen, Hao & Zhang, Haoran & Xu, Xuefang & Wang, Huanran, 2023. "Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging," Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    2. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
    3. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    4. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    5. Zhang, Yufei & Jin, Peng & Wang, Haiyang & Cai, Xuchao & Ge, Gangqiang & Chen, Hao & Wang, Huanran & Li, Ruixiong, 2024. "Dimensionless thermal performance analysis of a closed isothermal compressed air energy storage system with spray-enhanced heat transfer," Energy, Elsevier, vol. 307(C).
    6. Gao, Ziyu & Zhang, Xinjing & Li, Xiaoyu & Xu, Yujie & Chen, Haisheng, 2023. "Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection," Energy, Elsevier, vol. 284(C).
    7. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
    8. Patil, Vikram C. & Acharya, Pinaki & Ro, Paul I., 2020. "Experimental investigation of water spray injection in liquid piston for near-isothermal compression," Applied Energy, Elsevier, vol. 259(C).
    9. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    10. Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Wang, Ke & Cui, Qian & Liu, Yixue & He, Qing, 2024. "Performance analysis of a novel isothermal compressed carbon dioxide energy storage system integrated with solar thermal storage," Energy, Elsevier, vol. 303(C).
    12. Vallati, A. & de Lieto Vollaro, R. & Oclon, P. & Taler, J., 2021. "Experimental and analytical evaluation of a gas-liquid energy storage (GLES) prototype," Energy, Elsevier, vol. 224(C).
    13. Qihui Yu & Xiaodong Li & Zhigang Wei & Guoxin Sun & Xin Tan, 2022. "Study on Performance of a Modified Two-Stage Piston Expander Based on Spray Heat Transfer," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    14. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    15. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei & Ling, Lanning, 2023. "Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system," Energy, Elsevier, vol. 280(C).
    16. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    17. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    18. Luke Aquilina & Tonio Sant & Robert N. Farrugia & John Licari & Cyril Spiteri Staines & Daniel Buhagiar, 2024. "Measurements and Modelling of the Discharge Cycle of a Grid-Connected Hydro-Pneumatic Energy Storage System," Energies, MDPI, vol. 17(7), pages 1-33, March.
    19. Yanyue Wang & Guohua Fang, 2022. "Joint Operation Modes and Economic Analysis of Nuclear Power and Pumped Storage Plants under Different Power Market Environments," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    20. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.