IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222010052.html
   My bibliography  Save this article

Lift Energy Storage Technology: A solution for decentralized urban energy storage

Author

Listed:
  • Hunt, Julian David
  • Nascimento, Andreas
  • Zakeri, Behnam
  • Jurasz, Jakub
  • Dąbek, Paweł B.
  • Barbosa, Paulo Sergio Franco
  • Brandão, Roberto
  • de Castro, Nivalde José
  • Leal Filho, Walter
  • Riahi, Keywan

Abstract

The world is undergoing a rapid energy transformation dominated by growing capacities of renewable energy sources, such as wind and solar power. The intrinsic variable nature of such renewable energy sources calls for affordable energy storage solutions. This paper proposes using lifts and empty apartments in tall buildings to store energy. Lift Energy Storage Technology (LEST) is a gravitational-based storage solution. Energy is stored by lifting wet sand containers or other high-density materials, transported remotely in and out of the lift with autonomous trailer devices. The system requires empty spaces on the top and bottom of the building. An existing lift can be used to transport the containers from the lower apartments to the upper apartments to store energy and from the upper apartments to the lower apartments to generate electricity. The installed storage capacity cost is estimated at 21 to 128 USD/kWh, depending on the height of the building. LEST is particularly interesting for providing decentralized ancillary and energy storage services with daily to weekly energy storage cycles. The global potential for the technology is focused on large cities with high-rise buildings and is estimated to be around 30 to 300 GWh.

Suggested Citation

  • Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222010052
    DOI: 10.1016/j.energy.2022.124102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Julian David & Jurasz, Jakub & Zakeri, Behnam & Nascimento, Andreas & Cross, Samuel & Caten, Carla Schwengber ten & de Jesus Pacheco, Diego Augusto & Pongpairoj, Pharima & Filho, Walter Leal & T, 2022. "Electric Truck Hydropower, a flexible solution to hydropower in mountainous regions," Energy, Elsevier, vol. 248(C).
    2. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    3. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos & Pereira Junior, Amaro Olímipio, 2014. "Enhanced-Pumped-Storage: Combining pumped-storage in a yearly storage cycle with dams in cascade in Brazil," Energy, Elsevier, vol. 78(C), pages 513-523.
    4. Hunt, Julian David & Guillot, Vincent & Freitas, Marcos Aurélio Vasconcelos de & Solari, Renzo S.E., 2016. "Energy crop storage: An alternative to resolve the problem of unpredictable hydropower generation in Brazil," Energy, Elsevier, vol. 101(C), pages 91-99.
    5. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    6. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    7. Julian D. Hunt & Edward Byers & Yoshihide Wada & Simon Parkinson & David E. H. J. Gernaat & Simon Langan & Detlef P. Vuuren & Keywan Riahi, 2020. "Global resource potential of seasonal pumped hydropower storage for energy and water storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    8. Tukia, Toni & Uimonen, Semen & Siikonen, Marja-Liisa & Donghi, Claudio & Lehtonen, Matti, 2019. "Modeling the aggregated power consumption of elevators – the New York city case study," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    10. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    11. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    12. Taibi, Emanuele & Fernández del Valle, Carlos & Howells, Mark, 2018. "Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study," Energy, Elsevier, vol. 164(C), pages 65-78.
    13. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    14. Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
    15. Newbery, David, 2018. "Shifting demand and supply over time and space to manage intermittent generation: The economics of electrical storage," Energy Policy, Elsevier, vol. 113(C), pages 711-720.
    16. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    17. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Ali, Amjad & Esposito, Luca & Gatto, Andrea, 2023. "Energy transition and public behavior in Italy: A structural equation modeling," Resources Policy, Elsevier, vol. 85(PB).
    3. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    4. Yang, Biao & Li, Deyou & Fu, Xiaolong & Wang, Hongjie & Gong, Ruzhi, 2024. "Energy and exergy analysis of a novel pumped hydro compressed air energy storage system," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian David Hunt & Behnam Zakeri & Jakub Jurasz & Wenxuan Tong & Paweł B. Dąbek & Roberto Brandão & Epari Ritesh Patro & Bojan Đurin & Walter Leal Filho & Yoshihide Wada & Bas van Ruijven & Keywan Ri, 2023. "Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    3. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    4. Hunt, Julian David & Jurasz, Jakub & Zakeri, Behnam & Nascimento, Andreas & Cross, Samuel & Caten, Carla Schwengber ten & de Jesus Pacheco, Diego Augusto & Pongpairoj, Pharima & Filho, Walter Leal & T, 2022. "Electric Truck Hydropower, a flexible solution to hydropower in mountainous regions," Energy, Elsevier, vol. 248(C).
    5. Julian David Hunt & Andreas Nascimento & Oldrich Joel Romero Guzman & Gilton Carlos de Andrade Furtado & Carla Schwengber ten Caten & Fernanda Munari Caputo Tomé & Walter Leal Filho & Bojan Đurin & Ma, 2022. "Sedimentary Basin Water and Energy Storage: A Low Environmental Impact Option for the Bananal Basin," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    7. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    9. Papadakis C. Nikolaos & Fafalakis Marios & Katsaprakakis Dimitris, 2023. "A Review of Pumped Hydro Storage Systems," Energies, MDPI, vol. 16(11), pages 1-39, June.
    10. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco & Costalonga, Leandro, 2022. "Seawater air-conditioning and ammonia district cooling: A solution for warm coastal regions," Energy, Elsevier, vol. 254(PB).
    11. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    12. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    13. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    14. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    15. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    17. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    18. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    20. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222010052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.