IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003982.html
   My bibliography  Save this article

Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation

Author

Listed:
  • Aliaga, D.M.
  • Romero, C.P.
  • Feick, R.
  • Brooks, W.K.
  • Campbell, A.N.

Abstract

A liquid piston system (LP) is proposed to recover energy during the discharge of a liquid air energy storage (LAES) plant. The traditionally used air turbine is replaced with an LP system which will expand the evaporated air to generate power. Moreover, an NH3 and transcritical CO2 cycle are integrated to enhance heat and cold utilisation. The integrated LAES system was modelled using gPROMS. The numerical results have a maximum discrepancy of less than 6.4% from experimental data previously reported in the literature. The round-trip efficiency (RTE) was studied for various scenarios, including the sensitivity to thermal oil flow rate and heat exchanger efficiencies. Additionally, the study examined the influence of several LP configurations and concluded with a comparison to a conventional LAES system. With a liquefaction pressure of 40 bar, the highest RTE reached was 37%, surpassing the conventional LAES system’s 25% RTE at a discharge pressure of 25 bar. The heat utilisation was 96%, which doubles that of the conventional LAES system, while the cold utilisation was enhanced by 10%. Furthermore, the LP, NH3, and CO2 cycles thermal efficiencies were 88%, 19%, and 30%, respectively. A detailed energy assessment for heat and cold utilisation is presented.

Suggested Citation

  • Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003982
    DOI: 10.1016/j.apenergy.2024.123015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    2. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    3. Igobo, Opubo N. & Davies, Philip A., 2014. "Review of low-temperature vapour power cycle engines with quasi-isothermal expansion," Energy, Elsevier, vol. 70(C), pages 22-34.
    4. Antonelli, Marco & Barsali, Stefano & Desideri, Umberto & Giglioli, Romano & Paganucci, Fabrizio & Pasini, Gianluca, 2017. "Liquid air energy storage: Potential and challenges of hybrid power plants," Applied Energy, Elsevier, vol. 194(C), pages 522-529.
    5. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Gluesenkamp, Kyle R. & Abdelaziz, Omar & Jackson, Roderick K. & Daniel, Claus & Graham, Samuel & Momen, Ayyoub M., 2016. "Thermal analysis of near-isothermal compressed gas energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 948-960.
    6. Vallati, A. & de Lieto Vollaro, R. & Oclon, P. & Taler, J., 2021. "Experimental and analytical evaluation of a gas-liquid energy storage (GLES) prototype," Energy, Elsevier, vol. 224(C).
    7. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
    8. Zhang, Tong & Chen, Laijun & Zhang, Xuelin & Mei, Shengwei & Xue, Xiaodai & Zhou, Yuan, 2018. "Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy," Energy, Elsevier, vol. 155(C), pages 641-650.
    9. Morgan, Robert & Nelmes, Stuart & Gibson, Emma & Brett, Gareth, 2015. "Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant," Applied Energy, Elsevier, vol. 137(C), pages 845-853.
    10. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    11. Gouda, El Mehdi & Benaouicha, Mustapha & Neu, Thibault & Fan, Yilin & Luo, Lingai, 2022. "Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 254(PB).
    12. Zhang, X.R. & Yamaguchi, H. & Fujima, K. & Enomoto, M. & Sawada, N., 2007. "Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide," Energy, Elsevier, vol. 32(4), pages 591-599.
    13. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.
    14. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    15. Cayer, Emmanuel & Galanis, Nicolas & Nesreddine, Hakim, 2010. "Parametric study and optimization of a transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 87(4), pages 1349-1357, April.
    16. Peng, Xiaodong & She, Xiaohui & Cong, Lin & Zhang, Tongtong & Li, Chuan & Li, Yongliang & Wang, Li & Tong, Lige & Ding, Yulong, 2018. "Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage," Applied Energy, Elsevier, vol. 221(C), pages 86-99.
    17. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
    18. Guizzi, Giuseppe Leo & Manno, Michele & Tolomei, Ludovica Maria & Vitali, Ruggero Maria, 2015. "Thermodynamic analysis of a liquid air energy storage system," Energy, Elsevier, vol. 93(P2), pages 1639-1647.
    19. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    20. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    21. Camargos, Tomás P.L. & Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2018. "Experimental study of a PH-CAES system: Proof of concept," Energy, Elsevier, vol. 165(PA), pages 630-638.
    22. She, Xiaohui & Peng, Xiaodong & Nie, Binjian & Leng, Guanghui & Zhang, Xiaosong & Weng, Likui & Tong, Lige & Zheng, Lifang & Wang, Li & Ding, Yulong, 2017. "Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression," Applied Energy, Elsevier, vol. 206(C), pages 1632-1642.
    23. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
    24. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    25. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    26. Erren Yao & Huanran Wang & Long Liu & Guang Xi, 2014. "A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System," Energies, MDPI, vol. 8(1), pages 1-18, December.
    27. Li, Yongliang & Cao, Hui & Wang, Shuhao & Jin, Yi & Li, Dacheng & Wang, Xiang & Ding, Yulong, 2014. "Load shifting of nuclear power plants using cryogenic energy storage technology," Applied Energy, Elsevier, vol. 113(C), pages 1710-1716.
    28. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: Alternative system configurations," Energy, Elsevier, vol. 45(1), pages 386-396.
    29. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    30. Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
    31. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    32. Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
    33. Mercangöz, Mehmet & Hemrle, Jaroslav & Kaufmann, Lilian & Z’Graggen, Andreas & Ohler, Christian, 2012. "Electrothermal energy storage with transcritical CO2 cycles," Energy, Elsevier, vol. 45(1), pages 407-415.
    34. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    35. Huanran Wang & Liqin Wang & Xinbing Wang & Erren Yao, 2013. "A Novel Pumped Hydro Combined with Compressed Air Energy Storage System," Energies, MDPI, vol. 6(3), pages 1-14, March.
    36. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    37. Van de Ven, James D. & Li, Perry Y., 2009. "Liquid piston gas compression," Applied Energy, Elsevier, vol. 86(10), pages 2183-2191, October.
    38. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
    39. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    40. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    41. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling, simulation, and optimisation of a novel liquid piston system for energy recovery," Applied Energy, Elsevier, vol. 357(C).
    2. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    6. Chaitanya, Vuppanapalli & Narasimhan, S. & Venkatarathnam, G., 2023. "Optimization of a Solvay cycle-based liquid air energy storage system," Energy, Elsevier, vol. 283(C).
    7. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    8. Tafone, Alessio & Ding, Yulong & Li, Yongliang & Xie, Chunping & Romagnoli, Alessandro, 2020. "Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle," Energy, Elsevier, vol. 198(C).
    9. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    10. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    11. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    12. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    13. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    16. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    17. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).
    18. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    19. Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
    20. Cetegen, Shaylin A. & Gundersen, Truls & Barton, Paul I., 2024. "Evaluating economic feasibility of liquid air energy storage systems in US and European markets," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.