IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9645892.html
   My bibliography  Save this article

Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation

Author

Listed:
  • Hanlei Sun
  • Jianrui Sun
  • Kun Zhao
  • Licheng Wang
  • Kai Wang
  • Mohammad Yaghoub Abdollahzadeh Jamalabadi

Abstract

Lithium battery state of health (SOH) is a key parameter to characterize the actual battery life. SOH cannot be directly measured. In order to further improve the accuracy of SOH estimation of lithium batteries, a model combining incremental capacity analysis (ICA) and bidirectional long- and short-term memory (Bi-LSTM) neural networks based on health characteristic parameters is proposed to predict the SOH of lithium-ion batteries. First, the health characteristic parameters are initially selected from the lithium battery charging curve, and the health characteristics are extracted by the Pearson correlation coefficient, including the charging time of constant current, charging time of constant voltage, voltage change rate from 300 s to 1000 s, 200s of voltage per cycle at a time. Second, ICA was used to deeply mine the deep associations related to SOH and the peaks of IC curves and their corresponding voltages were extracted as additional inputs to the model. Then, Bi-LSTM is used to form a combined SOH estimation model through adaptive weighting factors. Finally, the verification is based on the 5th battery parameters of the NASA lithium battery data set. The experimental results show that the proposed combined model reduces the mean square error by 55.17%, 49.28%, and 41.47%, respectively, compared with single models such as BP neural network (BPNN), LSTM, and gated recurrent neural network (GRU).

Suggested Citation

  • Hanlei Sun & Jianrui Sun & Kun Zhao & Licheng Wang & Kai Wang & Mohammad Yaghoub Abdollahzadeh Jamalabadi, 2022. "Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, March.
  • Handle: RePEc:hin:jnlmpe:9645892
    DOI: 10.1155/2022/9645892
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/9645892.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/9645892.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/9645892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youcef Himri & Shafiqur Rehman & Ali Mostafaeipour & Saliha Himri & Adel Mellit & Mustapha Merzouk & Nachida Kasbadji Merzouk, 2022. "Overview of the Role of Energy Resources in Algeria’s Energy Transition," Energies, MDPI, vol. 15(13), pages 1-26, June.
    2. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    3. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.
    4. Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
    5. Mohamed Hassan & Manwinder Singh & Khalid Hamid & Rashid Saeed & Maha Abdelhaq & Raed Alsaqour, 2022. "Modeling of NOMA-MIMO-Based Power Domain for 5G Network under Selective Rayleigh Fading Channels," Energies, MDPI, vol. 15(15), pages 1-19, August.
    6. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    7. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    8. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    9. Yuqi Liang & Shuai Zhao, 2024. "Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model," Energies, MDPI, vol. 17(24), pages 1-16, December.
    10. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost," Energies, MDPI, vol. 15(16), pages 1-18, August.
    11. Chenqiang Luo & Zhendong Zhang & Shunliang Zhu & Yongying Li, 2023. "State-of-Health Prediction of Lithium-Ion Batteries Based on Diffusion Model with Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-14, April.
    12. Zhang, Chaolong & Luo, Laijin & Yang, Zhong & Du, Bolun & Zhou, Ziheng & Wu, Ji & Chen, Liping, 2024. "Flexible method for estimating the state of health of lithium-ion batteries using partial charging segments," Energy, Elsevier, vol. 295(C).
    13. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9645892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.