IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029997.html
   My bibliography  Save this article

Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia

Author

Listed:
  • Galimova, Tansu
  • Satymov, Rasul
  • Keiner, Dominik
  • Breyer, Christian

Abstract

Climate change-driven temperature rise in the Arctic has been shown to increase faster than on global average, heavily affecting Greenland's environment. Greenland's energy system is very vulnerable to oil prices, as it relies on imported oil. Rich wind resources complementary with solar resources may enable a transition to a sustainable and self-sufficient energy system. Greenland's transition from a fossil fuels-based system to a 100% renewable energy system between 2019 and 2050 and its position as a potential e-fuels and e-chemicals production hub for Europe, Japan, and South Korea, has been investigated in this study using the EnergyPLAN model. The results indicate a 25% reduction in annualised costs for a fully renewable energy system compared to the reference system. Importing regions can benefit from some of the lowest-cost energy carriers in the world in 2030, and these energy carriers will continue to have a low-cost level in 2050. This study estimates that the production and export of e-fuels and e-chemicals would require up to 300,000 workers for construction and operations. Renewable energy enables a full defossilisation of Greenland's energy system, enhances energy security, and provides opportunities for additional export revenues of up to 61 b€ annually.

Suggested Citation

  • Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029997
    DOI: 10.1016/j.energy.2023.129605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Peter U. Clark & Jeremy D. Shakun & Shaun A. Marcott & Alan C. Mix & Michael Eby & Scott Kulp & Anders Levermann & Glenn A. Milne & Patrik L. Pfister & Benjamin D. Santer & Daniel P. Schrag & Susan So, 2016. "Consequences of twenty-first-century policy for multi-millennial climate and sea-level change," Nature Climate Change, Nature, vol. 6(4), pages 360-369, April.
    3. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    4. Jacobson, Mark Z. & von Krauland, Anna-Katharina & Coughlin, Stephen J. & Palmer, Frances C. & Smith, Miles M., 2022. "Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage," Renewable Energy, Elsevier, vol. 184(C), pages 430-442.
    5. Vaiaso, T.V. Jr. & Jack, M.W., 2021. "Quantifying the trade-off between percentage of renewable supply and affordability in Pacific island countries: Case study of Samoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    7. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    8. Freda Kreier, 2022. "This Arctic town wants to make renewable energy work at the top of the world," Nature, Nature, vol. 605(7910), pages 406-407, May.
    9. Ashish Gulagi & Dmitrii Bogdanov & Mahdi Fasihi & Christian Breyer, 2017. "Can Australia Power the Energy-Hungry Asia with Renewable Energy?," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    10. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    11. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    12. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    13. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    14. Hedenus, F. & Jakobsson, N. & Reichenberg, L. & Mattsson, N., 2022. "Historical wind deployment and implications for energy system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
    16. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    17. Pursiheimo, Esa & Holttinen, Hannele & Koljonen, Tiina, 2019. "Inter-sectoral effects of high renewable energy share in global energy system," Renewable Energy, Elsevier, vol. 136(C), pages 1119-1129.
    18. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    19. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    20. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    21. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    22. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    23. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    24. Mahdi Fasihi & Dmitrii Bogdanov & Christian Breyer, 2017. "Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World," Sustainability, MDPI, vol. 9(2), pages 1-24, February.
    25. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    26. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    27. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    28. Magnus de Witt & Ágúst Valfells & Joan Nymand Larsen & Hlynur Stefánsson, 2022. "Simulation of Pathways toward Low-Carbon Electricity Generation in the Arctic," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    29. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    30. Katsaprakakis, Dimitris Al & Thomsen, Bjarti & Dakanali, Irini & Tzirakis, Kostas, 2019. "Faroe Islands: Towards 100% R.E.S. penetration," Renewable Energy, Elsevier, vol. 135(C), pages 473-484.
    31. Magnus de Witt & Hlynur Stefánsson & Ágúst Valfells & Joan Nymand Larsen, 2021. "Availability and Feasibility of Renewable Resources for Electricity Generation in the Arctic: The Cases of Longyearbyen, Maniitsoq, and Kotzebue," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    32. Brinkerink, Maarten & Gallachóir, Brian Ó & Deane, Paul, 2019. "A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 274-287.
    33. Daniel J. Sambor & Michelle Wilber & Erin Whitney & Mark Z. Jacobson, 2020. "Development of a Tool for Optimizing Solar and Battery Storage for Container Farming in a Remote Arctic Microgrid," Energies, MDPI, vol. 13(19), pages 1-18, October.
    34. Jason E. Box & Alun Hubbard & David B. Bahr & William T. Colgan & Xavier Fettweis & Kenneth D. Mankoff & Adrien Wehrlé & Brice Noël & Michiel R. Broeke & Bert Wouters & Anders A. Bjørk & Robert S. Fau, 2022. "Greenland ice sheet climate disequilibrium and committed sea-level rise," Nature Climate Change, Nature, vol. 12(9), pages 808-813, September.
    35. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    36. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    2. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    3. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    4. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    6. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    7. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Caldera, Upeksha & Gulagi, Ashish & Jayasinghe, Nilan & Breyer, Christian, 2023. "Looking island wide to overcome Sri Lankaʼs energy crisis while gaining independence from fossil fuel imports," Renewable Energy, Elsevier, vol. 218(C).
    10. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    11. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    12. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    13. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    14. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    15. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    16. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    17. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    18. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    19. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    20. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.