IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v294y2021ics0306261920315750.html
   My bibliography  Save this article

Global potential of green ammonia based on hybrid PV-wind power plants

Author

Listed:
  • Fasihi, Mahdi
  • Weiss, Robert
  • Savolainen, Jouni
  • Breyer, Christian

Abstract

Ammonia is one of the most commonly used feedstock chemicals globally. Therefore, decarbonisation of ammonia production is of high relevance towards achieving a carbon neutral energy system. This study investigates the global potential of green ammonia production from semi-flexible ammonia plants utilising a cost-optimised configuration of hybrid PV-wind power plants, as well as conversion and balancing technologies. The global weather data used is on an hourly time scale and 0.45° × 0.45° spatial resolution. The results show that, by 2030, solar PV would be the dominating electricity generation technology in most parts of the world, and the role of batteries would be limited, while no significant role is found for hydrogen-fuelled gas turbines. Green ammonia could be generated at the best sites in the world for a cost range of 440–630, 345–420, 300–330 and 260–290 €/tNH3 in 2020, 2030, 2040 and 2050, respectively, for a weighted average capital cost of 7%. Comparing this to the decade-average fossil-based ammonia cost of 300–350 €/t, green ammonia could become cost-competitive in niche markets by 2030, and substitute fossil-based ammonia globally at current cost levels. A possible cost decline of natural gas and consequently fossil-based ammonia could be fully neutralised by greenhouse gas emissions cost of about 75 €/tCO2 by 2040. By 2040, green ammonia in China would be lower in cost than ammonia from new coal-based plants, even at the lowest coal prices and no greenhouse gas emissions cost. The difference in green ammonia production at the least-cost sites in the world’s nine major regions is less than 50 €/tNH3 by 2040. Thus, ammonia shipping cost could limit intercontinental trading and favour local or regional production beyond 2040.

Suggested Citation

  • Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:appene:v:294:y:2021:i:c:s0306261920315750
    DOI: 10.1016/j.apenergy.2020.116170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Ashish Gulagi & Dmitrii Bogdanov & Mahdi Fasihi & Christian Breyer, 2017. "Can Australia Power the Energy-Hungry Asia with Renewable Energy?," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    3. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    4. Frattini, D. & Cinti, G. & Bidini, G. & Desideri, U. & Cioffi, R. & Jannelli, E., 2016. "A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants," Renewable Energy, Elsevier, vol. 99(C), pages 472-482.
    5. Elishav, Oren & Lewin, Daniel R. & Shter, Gennady E. & Grader, Gideon S., 2017. "The nitrogen economy: Economic feasibility analysis of nitrogen-based fuels as energy carriers," Applied Energy, Elsevier, vol. 185(P1), pages 183-188.
    6. Mahdi Fasihi & Dmitrii Bogdanov & Christian Breyer, 2017. "Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World," Sustainability, MDPI, vol. 9(2), pages 1-24, February.
    7. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    2. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    3. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    4. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    5. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    7. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    8. Haas, Jannik & Moreno-Leiva, Simón & Junne, Tobias & Chen, Po-Jung & Pamparana, Giovanni & Nowak, Wolfgang & Kracht, Willy & Ortiz, Julián M., 2020. "Copper mining: 100% solar electricity by 2030?," Applied Energy, Elsevier, vol. 262(C).
    9. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    10. Ali Mostafaeipour & Ali Sadeghi Sedeh & Shahariar Chowdhury & Kuaanan Techato, 2020. "Ranking Potential Renewable Energy Systems to Power On-Farm Fertilizer Production," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    11. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    13. Verleysen, Kevin & Parente, Alessandro & Contino, Francesco, 2021. "How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)," Energy, Elsevier, vol. 232(C).
    14. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    15. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    16. Linda Barelli & Gianni Bidini & Giovanni Cinti, 2020. "Operation of a Solid Oxide Fuel Cell Based Power System with Ammonia as a Fuel: Experimental Test and System Design," Energies, MDPI, vol. 13(23), pages 1-19, November.
    17. Cinti, Giovanni & Frattini, Domenico & Jannelli, Elio & Desideri, Umberto & Bidini, Gianni, 2017. "Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant," Applied Energy, Elsevier, vol. 192(C), pages 466-476.
    18. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    19. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:294:y:2021:i:c:s0306261920315750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.