IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006967.html
   My bibliography  Save this article

Historical wind deployment and implications for energy system models

Author

Listed:
  • Hedenus, F.
  • Jakobsson, N.
  • Reichenberg, L.
  • Mattsson, N.

Abstract

A critical parameter in modeling studies of future decarbonized energy systems is the potential future capacity for onshore wind power. Wind power potential in energy system models is subject to assumptions regarding: (i) constraints on land availability for wind deployment; (ii) how densely wind turbines may be placed over larger areas, and (iii) allocation of capacity with respect to wind speed. By analyzing comprehensive databases of wind turbine locations and other GIS data in eleven countries and seventeen states in Australia, Canada, and the US; all with high penetration levels of wind power, we find that: i) large wind turbines are installed on most land types, even protected areas and land areas with high population density; ii) it is not uncommon with a deployment density up to 0.5 MW/km2 on municipality or county level, with rare outlier municipalities reaching up to 1.5 MW/km2 installed capacity; and iii) wind power has historically been allocated to relatively windy sites with average wind speed above 6 m/s. In many cases, allocation methods used in energy system models do not consistently reflect actual installations. For instance, we find no evidence of concentration of installations at the windiest sites, as is frequently assumed in energy system models. We conclude that assumptions made in models regarding wind power potentials are poorly reflective of historical installation patterns, and we provide new data to enable assumptions that have a more robust empirical foundation.

Suggested Citation

  • Hedenus, F. & Jakobsson, N. & Reichenberg, L. & Mattsson, N., 2022. "Historical wind deployment and implications for energy system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006967
    DOI: 10.1016/j.rser.2022.112813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    2. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & von Krauland, Anna-Katharina & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2021. "On the socio-technical potential for onshore wind in Europe: A response to critics," Energy Policy, Elsevier, vol. 151(C).
    3. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    4. Nestor A. Sepulveda & Jesse D. Jenkins & Aurora Edington & Dharik S. Mallapragada & Richard K. Lester, 2021. "The design space for long-duration energy storage in decarbonized power systems," Nature Energy, Nature, vol. 6(5), pages 506-516, May.
    5. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    6. Staid, Andrea & Guikema, Seth D., 2013. "Statistical analysis of installed wind capacity in the United States," Energy Policy, Elsevier, vol. 60(C), pages 378-385.
    7. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    8. Ryberg, David Severin & Tulemat, Zena & Stolten, Detlef & Robinius, Martin, 2020. "Uniformly constrained land eligibility for onshore European wind power," Renewable Energy, Elsevier, vol. 146(C), pages 921-931.
    9. Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
    10. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    11. Ryberg, David Severin & Caglayan, Dilara Gulcin & Schmitt, Sabrina & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs," Energy, Elsevier, vol. 182(C), pages 1222-1238.
    12. Thomas Lauf & Kristina Ek & Erik Gawel & Paul Lehmann & Patrik Söderholm, 2020. "The regional heterogeneity of wind power deployment: an empirical investigation of land-use policies in Germany and Sweden," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 751-778, March.
    13. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    14. Lopez, Anthony & Mai, Trieu & Lantz, Eric & Harrison-Atlas, Dylan & Williams, Travis & Maclaurin, Galen, 2021. "Land use and turbine technology influences on wind potential in the United States," Energy, Elsevier, vol. 223(C).
    15. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "A geographic information system-based global variable renewable potential assessment using spatially resolved simulation," Energy, Elsevier, vol. 193(C).
    16. Daisuke Murakami & Yoshiki Yamagata, 2019. "Estimation of Gridded Population and GDP Scenarios with Spatially Explicit Statistical Downscaling," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    2. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    3. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    4. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    5. Reichenberg, Lina & Hedenus, Fredrik & Mattsson, Niclas & Verendel, Vilhelm, 2022. "Deep decarbonization and the supergrid – Prospects for electricity transmission between Europe and China," Energy, Elsevier, vol. 239(PE).
    6. Benalcazar, Pablo & Komorowska, Aleksandra & Kamiński, Jacek, 2024. "A GIS-based method for assessing the economics of utility-scale photovoltaic systems," Applied Energy, Elsevier, vol. 353(PA).
    7. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    8. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    12. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Lehmann, Paul & Tafarte, Philip, 2024. "Exclusion zones for renewable energy deployment: One man’s blessing, another man’s curse," Resource and Energy Economics, Elsevier, vol. 76(C).
    14. Antonio Jiménez-Garrote & Francisco J. Santos-Alamillos & Guadalupe Sánchez-Hernández & Miguel López-Cuesta & José A. Ruiz-Arias & David Pozo-Vázquez, 2024. "Evaluation of a Database of the Spanish Wind Energy Resources Derived from a Regional Reanalysis," Energies, MDPI, vol. 17(7), pages 1-25, March.
    15. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    16. Martin Staadecker & Julia Szinai & Pedro A. Sánchez-Pérez & Sarah Kurtz & Patricia Hidalgo-Gonzalez, 2024. "The value of long-duration energy storage under various grid conditions in a zero-emissions future," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Patrick Buchenberg & Thushara Addanki & David Franzmann & Christoph Winkler & Felix Lippkau & Thomas Hamacher & Philipp Kuhn & Heidi Heinrichs & Markus Blesl, 2023. "Global Potentials and Costs of Synfuels via Fischer–Tropsch Process," Energies, MDPI, vol. 16(4), pages 1-18, February.
    18. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org, revised Aug 2024.
    19. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    20. Jung, Christopher & Schindler, Dirk, 2022. "On the influence of wind speed model resolution on the global technical wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.