IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029286.html
   My bibliography  Save this article

An efficient high cooling-capacity 40 K pulse tube refrigerator using an active dual-piston as phase shifter

Author

Listed:
  • Hui, Hejun
  • Song, Jiantang
  • Yin, Wang
  • Ding, Lei
  • Liu, Shaoshuai
  • Jiang, Zhenhua
  • Zhu, Haifeng
  • Wu, Yinong

Abstract

Superconducting systems can reduce the generation of Joule heat and improve energy utilization efficiency, which has a broad application prospect. Improving the energy conversion efficiency of the refrigerator in superconducting systems is crucial, which can further improve the energy utilization efficiency of superconducting systems and promote the large-scale application of superconducting systems. In this paper, an electrical analogy model is developed to calculate the energy conversion efficiency of the pulse tube refrigerator with active dual-piston. And a 40 K pulse tube refrigerator with a high cooling capacity using active dual-piston is designed and fabricated, the accuracy of the model is verified by comparisons of cooling capacity, compressor efficiency, and power of active dual-piston at 300W input electrical power of the compressor. A cooling capacity of 7.17 W can be obtained at 40 K with an electrical power of 506 W. The active dual-piston electrical power reduces from 20 W to 0 W as the diameter of active dual-piston decrease from 24 mm to 18 mm. This study contributes to designing and optimizing a high-energy conversion pulse tube refrigerator with an active dual-piston.

Suggested Citation

  • Hui, Hejun & Song, Jiantang & Yin, Wang & Ding, Lei & Liu, Shaoshuai & Jiang, Zhenhua & Zhu, Haifeng & Wu, Yinong, 2024. "An efficient high cooling-capacity 40 K pulse tube refrigerator using an active dual-piston as phase shifter," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029286
    DOI: 10.1016/j.energy.2023.129534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Kun, 2018. "Analysis of oil-free linear compressor operated at high pressure ratios for household refrigeration," Energy, Elsevier, vol. 151(C), pages 324-331.
    2. Liu, Shaoshuai & Chen, Xi & Zhang, Ankuo & Jiang, Zhenhua & Wu, Yinong & Zhang, Hua, 2017. "Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures," Energy, Elsevier, vol. 123(C), pages 378-385.
    3. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Wang, X.T. & Dai, W., 2013. "A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids," Applied Energy, Elsevier, vol. 112(C), pages 1166-1170.
    4. Wang, Bo & Chao, Yijun & Zhao, Qinyu & Wang, Haoren & Wang, Yabin & Gan, Zhihua, 2021. "A high efficiency stirling-type pulse tube refrigerator for cooling above 200 K," Energy, Elsevier, vol. 215(PB).
    5. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    2. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).
    3. Hu, J.Y. & Luo, E.C. & Dai, W. & Zhang, L.M., 2017. "Parameter sensitivity analysis of duplex Stirling coolers," Applied Energy, Elsevier, vol. 190(C), pages 1039-1046.
    4. Hu, J.Y. & Chen, S. & Zhu, J. & Zhang, L.M. & Luo, E.C. & Dai, W. & Li, H.B., 2016. "An efficient pulse tube cryocooler for boil-off gas reliquefaction in liquid natural gas tanks," Applied Energy, Elsevier, vol. 164(C), pages 1012-1018.
    5. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism," Applied Energy, Elsevier, vol. 171(C), pages 172-183.
    6. Cao, Qiang, 2018. "Attainability of the Carnot efficiency with real gases in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 220(C), pages 705-712.
    7. Qian, Nibin & Yang, Chunhui & Li, Zhaohua & Liang, Kun & Zhu, Zhennan & Chen, Xinwen, 2024. "A small ammonia heat pump using linear compressor," Energy, Elsevier, vol. 293(C).
    8. Cao, Qiang & Sun, Zheng & Li, Zimu & Luan, Mingkai & Tang, Xiao & Li, Peng & Jiang, Zhenhua & Wei, Li, 2019. "Reduction of real gas losses with a DC flow in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 235(C), pages 139-146.
    9. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    10. Xue, Renjun & Tan, Jun & Zhao, Bangjian & Zhao, Yongjiang & Tan, Han & Wu, Shiguang & Zhai, Yujia & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor," Energy, Elsevier, vol. 278(PB).
    11. Guillermo GarcĂ­a & D. Marene Larruskain & Agurtzane Etxegarai, 2022. "Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids," Energies, MDPI, vol. 15(13), pages 1-20, June.
    12. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
    13. Rania A. Ibrahim & Nahla E. Zakzouk, 2023. "Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter," Energies, MDPI, vol. 16(10), pages 1-24, May.
    14. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    15. Sang-Yong Park & Geon-Woong Kim & Ji-Sol Jeong & Hyo-Sang Choi, 2023. "The Structural and Electromagnetic Comparative Analysis of the Bifilar-Meander-Type Winding Method of Superconducting DC Circuit Breaker," Energies, MDPI, vol. 16(4), pages 1-20, February.
    16. Xu, Jingyuan & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2017. "Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range," Applied Energy, Elsevier, vol. 185(P2), pages 2134-2141.
    17. Yoo-Jung Cho & Sung-Hun Lim, 2022. "Impedance Compensation Method Considering Unbalanced Ground Fault with SFCL in a Power Distribution System," Energies, MDPI, vol. 15(19), pages 1-14, October.
    18. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    19. Li, Chengzhan & Sun, Jian & Zou, Huiming & Cai, Jinghui & Zhu, Tingting, 2023. "Characteristic analysis and energy efficiency of an oil-free dual-piston linear compressor for household refrigeration with various conditions," Energy, Elsevier, vol. 270(C).
    20. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.