A high efficiency stirling-type pulse tube refrigerator for cooling above 200 K
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.119120
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
- Mark O. McLinden & J. Steven Brown & Riccardo Brignoli & Andrei F. Kazakov & Piotr A. Domanski, 2017. "Limited options for low-global-warming-potential refrigerants," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hui, Hejun & Song, Jiantang & Yin, Wang & Ding, Lei & Liu, Shaoshuai & Jiang, Zhenhua & Zhu, Haifeng & Wu, Yinong, 2024. "An efficient high cooling-capacity 40 K pulse tube refrigerator using an active dual-piston as phase shifter," Energy, Elsevier, vol. 286(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
- Armando Di Meglio & Nicola Massarotti, 2022. "CFD Modeling of Thermoacoustic Energy Conversion: A Review," Energies, MDPI, vol. 15(10), pages 1-38, May.
- Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
- Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
- Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
- Xu, Jingyuan & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2017. "Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range," Applied Energy, Elsevier, vol. 185(P2), pages 2134-2141.
- Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
- He, Yijian & Jiang, Yunyun & Fan, Yuchen & Chen, Guangming & Tang, Liming, 2020. "Utilization of ultra-low temperature heat by a novel cascade refrigeration system with environmentally-friendly refrigerants," Renewable Energy, Elsevier, vol. 157(C), pages 204-213.
- Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
- Gianluca Valenti & Aldo Bischi & Stefano Campanari & Paolo Silva & Antonino Ravidà & Ennio Macchi, 2021. "Experimental and Numerical Study of a Microcogeneration Stirling Unit under On–Off Cycling Operation," Energies, MDPI, vol. 14(4), pages 1-14, February.
- Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
- Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
- Kim, Junyoung & James, Nelson & Maguire, Jeff, 2024. "Investigation of a high-temperature combination heat pump for lower-cost electrification in multifamily buildings," Applied Energy, Elsevier, vol. 376(PA).
- Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
- Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
- Luo, Baojun & Xiang, Quanwei & Su, Xiaoxue & Zhang, Shunfeng & Yan, Piaopiao & Liu, Jingping & Li, Ruijie, 2024. "A novel cycle engine for low-grade heat utilization: Principle, conceptual design and thermodynamic analysis," Energy, Elsevier, vol. 301(C).
- Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Zhang, Yutao & Shi, Xueqiang & Li, Yaqing & Zhang, Yuanbo & Liu, Yurui, 2020. "Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients," Energy, Elsevier, vol. 197(C).
- Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
- Yang, Fufang & Yang, Fubin & Liu, Qiang & Chu, Qingfu & Yang, Zhen & Duan, Yuanyuan, 2022. "Thermodynamic analysis of working fluids: What is the highest performance of the sub- and trans-critical organic Rankine cycles?," Energy, Elsevier, vol. 241(C).
More about this item
Keywords
Stirling-type pulse tube refrigerators; Room temperature range; Acoustic-mechanical-electrical (AcME) coupling; Sage; REGEN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322271. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.