Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.02.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Jingyuan & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2016. "A looped three-stage cascade traveling-wave thermoacoustically-driven cryocooler," Energy, Elsevier, vol. 112(C), pages 804-809.
- Xu, Jingyuan & Hu, Jianying & Zhang, Limin & Dai, Wei & Luo, Ercang, 2015. "Effect of coupling position on a looped three-stage thermoacoustically-driven pulse tube cryocooler," Energy, Elsevier, vol. 93(P1), pages 994-998.
- Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hui, Hejun & Song, Jiantang & Yin, Wang & Ding, Lei & Liu, Shaoshuai & Jiang, Zhenhua & Zhu, Haifeng & Wu, Yinong, 2024. "An efficient high cooling-capacity 40 K pulse tube refrigerator using an active dual-piston as phase shifter," Energy, Elsevier, vol. 286(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
- Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
- Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
- Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
- Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
- Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
- Zhang, Yutao & Shi, Xueqiang & Li, Yaqing & Zhang, Yuanbo & Liu, Yurui, 2020. "Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients," Energy, Elsevier, vol. 197(C).
- Wang, Bo & Chao, Yijun & Zhao, Qinyu & Wang, Haoren & Wang, Yabin & Gan, Zhihua, 2021. "A high efficiency stirling-type pulse tube refrigerator for cooling above 200 K," Energy, Elsevier, vol. 215(PB).
- Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
- Tan, Jingqi & Luo, Jiaqi & Huang, Jiale & Wei, Jianjian & Jin, Tao, 2020. "A closed two-phase thermofluidic oscillator with zeotropic mixtures for low-grade heat recovery," Energy, Elsevier, vol. 211(C).
- Xu, Jingyuan & Zhang, Limin & Hu, Jianying & Wu, Zhanghua & Bi, Tianjiao & Dai, Wei & Luo, Ercang, 2016. "An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas," Energy, Elsevier, vol. 101(C), pages 427-433.
- Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
- Armando Di Meglio & Nicola Massarotti, 2022. "CFD Modeling of Thermoacoustic Energy Conversion: A Review," Energies, MDPI, vol. 15(10), pages 1-38, May.
- Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
- Xiao, Lei & Chi, Jiaxin & Luo, Kaiqi & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "Influence of DC flow on the performance of a bypass-typed heat-driven thermoacoustic refrigerator," Energy, Elsevier, vol. 306(C).
- Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
- Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
- Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
- Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
More about this item
Keywords
High temperature inertance tube; Pulse tube refrigerator; Cooling performance; Simulation; Experiment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:378-385. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.