Reduction of real gas losses with a DC flow in the regenerator of the refrigeration cycle
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.10.096
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism," Applied Energy, Elsevier, vol. 171(C), pages 172-183.
- Kelley, Morgan T. & Pattison, Richard C. & Baldick, Ross & Baldea, Michael, 2018. "An MILP framework for optimizing demand response operation of air separation units," Applied Energy, Elsevier, vol. 222(C), pages 951-966.
- Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
- Trevizoli, Paulo V. & Nakashima, Alan T. & Peixer, Guilherme F. & Barbosa, Jader R., 2017. "Performance assessment of different porous matrix geometries for active magnetic regenerators," Applied Energy, Elsevier, vol. 187(C), pages 847-861.
- Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
- Liu, Y.W. & Liu, X. & Yuan, X.Zh. & Wang, X.J., 2016. "Optimizing design of a new zero boil off cryogenic storage tank in microgravity," Applied Energy, Elsevier, vol. 162(C), pages 1678-1686.
- Tipole, Pralhad & Karthikeyan, A. & Bhojwani, Virendra & Patil, Abhay & Oak, Ninad & Ponatil, Amal & Nagori, Palash, 2016. "Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system," Applied Energy, Elsevier, vol. 182(C), pages 376-382.
- Li, Xiaowei & Liu, Bin & Yu, Guoyao & Dai, Wei & Hu, Jianying & Luo, Ercang & Li, Haibing, 2017. "Experimental validation and numeric optimization of a resonance tube-coupled duplex Stirling cooler," Applied Energy, Elsevier, vol. 207(C), pages 604-612.
- Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.
- Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
- Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
- Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Wang, X.T. & Dai, W., 2013. "A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids," Applied Energy, Elsevier, vol. 112(C), pages 1166-1170.
- Hu, J.Y. & Chen, S. & Zhu, J. & Zhang, L.M. & Luo, E.C. & Dai, W. & Li, H.B., 2016. "An efficient pulse tube cryocooler for boil-off gas reliquefaction in liquid natural gas tanks," Applied Energy, Elsevier, vol. 164(C), pages 1012-1018.
- O’Connor, William E. & Warzoha, Ronald & Weigand, Rebecca & Fleischer, Amy S. & Wemhoff, Aaron P., 2014. "Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point," Applied Energy, Elsevier, vol. 132(C), pages 496-506.
- Cao, Qiang, 2018. "Attainability of the Carnot efficiency with real gases in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 220(C), pages 705-712.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cao, Qiang, 2018. "Attainability of the Carnot efficiency with real gases in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 220(C), pages 705-712.
- Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism," Applied Energy, Elsevier, vol. 171(C), pages 172-183.
- Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
- Xu, Jingyuan & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2017. "Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range," Applied Energy, Elsevier, vol. 185(P2), pages 2134-2141.
- Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
- Biglia, Alessandro & Bilardo, Matteo & Comba, Lorenzo & Ricauda Aimonino, Davide & Grella, Marco & Fabrizio, Enrico & Gay, Paolo, 2024. "Performance analysis of a nitrogen-based Brayton cryocooler prototype," Energy, Elsevier, vol. 290(C).
- Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
- Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
- Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
- d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
- Hui, Hejun & Song, Jiantang & Yin, Wang & Ding, Lei & Liu, Shaoshuai & Jiang, Zhenhua & Zhu, Haifeng & Wu, Yinong, 2024. "An efficient high cooling-capacity 40 K pulse tube refrigerator using an active dual-piston as phase shifter," Energy, Elsevier, vol. 286(C).
- Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
- Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
- Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
- Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
- Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
- Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
More about this item
Keywords
Real gas effect; Regenerator; Refrigeration cycle; DC flow; Efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:139-146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.