IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4206-d1151411.html
   My bibliography  Save this article

Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter

Author

Listed:
  • Rania A. Ibrahim

    (Electrical and Control Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Alexandria 1029, Egypt)

  • Nahla E. Zakzouk

    (Electrical and Control Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Alexandria 1029, Egypt)

Abstract

Single-stage grid-interfaced PV topologies have challenges with high grid fault currents, despite being more efficient, simpler to implement, and less expensive than two-stage ones. In such systems, a single inverter is required to perform all grid-interface tasks. i.e., maximum power point tracking (MPPT), DC voltage stabilization, and grid current control. This necessitates a hardware-based fault current limitation solution rather than a software-based one to avoid adding to the inverter’s control complexity and to mitigate the implications of PV system tripping. Therefore, in this study, a dual-functional non-superconducting saturated-core inductor-based (SCI) reactor is proposed to be applied at the output of a single-stage PV inverter. It involves two operation modes: a grid pre-fault mode where it filters the line current, hence minimizing its THD, and a grid-fault mode where it acts as a fault current limiter (FCL). Controlling the DC saturation current flowing into its control winding terminals alters the core magnetization of the SCI to vary its impedance between a low value during normal utility operation and a maximal value during faults. Consequently, the system is protected against inverter failures or unnecessary circuit-breaker tripping, which preserves service continuity and reduces system losses. Moreover, compared to existing FCLs, the proposed topology is an appealing candidate in terms of cost, size, reliability, and harmonic filtering ability. The bi-functionality and usefulness of the proposed reactor are confirmed using simulation and experimental results.

Suggested Citation

  • Rania A. Ibrahim & Nahla E. Zakzouk, 2023. "Bi-Functional Non-Superconducting Saturated-Core Inductor for Single-Stage Grid-Tied PV Systems: Filter and Fault Current Limiter," Energies, MDPI, vol. 16(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4206-:d:1151411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adel A. Abou El-Ela & Ragab A. El-Sehiemy & Abdullah M. Shaheen & Aya R. Ellien, 2022. "Review on Active Distribution Networks with Fault Current Limiters and Renewable Energy Resources," Energies, MDPI, vol. 15(20), pages 1-30, October.
    2. Ibrahim M. Mehedi & Jahin Al Hasan Joy & Md. Rafiqul Islam & Nayeema Hasan & Ubaid M. Al-Saggaf & Ahmad H. Milyani & Ahmed I. Iskanderani & Abdullah Abusorrah & Muhyaddin Rawa & Hussain Bassi, 2021. "Reducing Fault Current by Using FACTS Devices to Improve Electrical Power Flow," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, September.
    3. Yandi G. Landera & Oscar C. Zevallos & Rafael C. Neto & Jose F. da Costa Castro & Francisco A. S. Neves, 2023. "A Review of Grid Connection Requirements for Photovoltaic Power Plants," Energies, MDPI, vol. 16(5), pages 1-24, February.
    4. Muhammad Yasir Ali Khan & Haoming Liu & Zhihao Yang & Xiaoling Yuan, 2020. "A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies," Energies, MDPI, vol. 13(16), pages 1-40, August.
    5. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    6. Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Hejun & Song, Jiantang & Yin, Wang & Ding, Lei & Liu, Shaoshuai & Jiang, Zhenhua & Zhu, Haifeng & Wu, Yinong, 2024. "An efficient high cooling-capacity 40 K pulse tube refrigerator using an active dual-piston as phase shifter," Energy, Elsevier, vol. 286(C).
    2. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    3. Xue, Renjun & Tan, Jun & Zhao, Bangjian & Zhao, Yongjiang & Tan, Han & Wu, Shiguang & Zhai, Yujia & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor," Energy, Elsevier, vol. 278(PB).
    4. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    5. Mohamed Els. S. Abdelwareth & Dedet Candra Riawan & Chow Chompoo-inwai, 2023. "Optimum Generated Power for a Hybrid DG/PV/Battery Radial Network Using Meta-Heuristic Algorithms Based DG Allocation," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    6. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    7. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    8. Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    9. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    10. Lakshmi Syamala & Deepa Sankar & Suhara Ekkarakkudy Makkar & Bos Mathew Jos & Mathew Kallarackal, 2022. "Hysteresis Based Quasi Fixed Frequency Current Control of Single Phase Full Bridge Grid Integrated Voltage Source Inverter," Energies, MDPI, vol. 15(21), pages 1-17, October.
    11. Muhammad Yasir Ali Khan & Haoming Liu & Salman Habib & Danish Khan & Xiaoling Yuan, 2022. "Design and Performance Evaluation of a Step-Up DC–DC Converter with Dual Loop Controllers for Two Stages Grid Connected PV Inverter," Sustainability, MDPI, vol. 14(2), pages 1-22, January.
    12. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    13. Elieser Tarigan, 2024. "Techno-Economic Analysis of Residential Grid-Connected Rooftop Solar PV Systems in Indonesia Under MEMR 26/2021 Regulation," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 412-417, January.
    14. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    15. Guillermo García & D. Marene Larruskain & Agurtzane Etxegarai, 2022. "Modelling of Resistive Type Superconducting Fault Current Limiter for HVDC Grids," Energies, MDPI, vol. 15(13), pages 1-20, June.
    16. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).
    17. Elieser Tarigan, 2023. "Financial Analysis of Solar Rooftop PV System: Case Study in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 15-19, May.
    18. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    19. Danish Khan & Pengfei Hu & Muhammad Waseem & Muhammad Yasir Ali Khan & Mustafa Tahir & Andres Annuk, 2022. "Practical Evaluation of Loss Reduction in Isolated Series Resonant Converter with Fixed Frequency Modulation," Energies, MDPI, vol. 15(16), pages 1-20, August.
    20. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4206-:d:1151411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.