IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029201.html
   My bibliography  Save this article

Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning

Author

Listed:
  • Zhang, Tianhao
  • Dong, Zhe
  • Huang, Xiaojin

Abstract

The nuclear steam supply system (NSSS) is a critical component of a nuclear power plant that produces steam for electricity or cogeneration. However, the performance of current control strategies in the NSSS is limited since the coupling in the system is too complex and non-linear to be modeled precisely. Thus, there is an urgent need to study the model-free optimization method of NSSS. Motivated by this, this article proposes a novel multi-objective optimization approach based on deep reinforcement learning (DRL). With a hierarchical structure, the proposed method improves the response performances of both thermal power and outlet steam temperature by dynamically adjusting the reference values of existing proportional–integral–differential (PID) controllers within NSSS. This structure combines the stability of PID’s closed-loop control and the optimization capabilities of DRL for a safe and efficient operation. Moreover, a safe DRL method with an event-triggered mechanism is proposed to further ensure safety throughout the optimization process. The numerical simulations demonstrate the effectiveness and superiority of the proposed method, which results in significant improvements in the transient response compared to traditional PID controllers.

Suggested Citation

  • Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029201
    DOI: 10.1016/j.energy.2023.129526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    2. Si, Yupeng & Wang, Rongjie & Zhang, Shiqi & Zhou, Wenting & Lin, Anhui & Zeng, Guangmiao, 2022. "Configuration optimization and energy management of hybrid energy system for marine using quantum computing," Energy, Elsevier, vol. 253(C).
    3. Wang, Chen & Raza, Syed Ali & Adebayo, Tomiwa Sunday & Yi, Sun & Shah, Muhammad Ibrahim, 2023. "The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis," Energy, Elsevier, vol. 262(PA).
    4. Yuan, Xiaohui & Zhang, Binqiao & Wang, Pengtao & Liang, Ji & Yuan, Yanbin & Huang, Yuehua & Lei, Xiaohui, 2017. "Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm," Energy, Elsevier, vol. 122(C), pages 70-82.
    5. Price, James & Keppo, Ilkka & Dodds, Paul E., 2023. "The role of new nuclear power in the UK's net-zero emissions energy system," Energy, Elsevier, vol. 262(PA).
    6. Zhang, Houwang & Wu, Qiuwei & Chen, Jian & Lu, Lina & Zhang, Jiangfeng & Zhang, Shuyi, 2023. "Multiple stage stochastic planning of integrated electricity and gas system based on distributed approximate dynamic programming," Energy, Elsevier, vol. 270(C).
    7. Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
    8. Dittmar, Michael, 2012. "Nuclear energy: Status and future limitations," Energy, Elsevier, vol. 37(1), pages 35-40.
    9. Shi, Tao & Xu, Chang & Dong, Wenhao & Zhou, Hangyu & Bokhari, Awais & Klemeš, Jiří Jaromír & Han, Ning, 2023. "Research on energy management of hydrogen electric coupling system based on deep reinforcement learning," Energy, Elsevier, vol. 282(C).
    10. Cui, Chengcheng & Zhang, Junli & Shen, Jiong, 2023. "System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system," Energy, Elsevier, vol. 283(C).
    11. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    12. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    13. Yeo, Eng Jet & Kennedy, David M. & O'Rourke, Fergal, 2022. "Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm," Energy, Elsevier, vol. 250(C).
    14. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    15. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    16. Jonas Degrave & Federico Felici & Jonas Buchli & Michael Neunert & Brendan Tracey & Francesco Carpanese & Timo Ewalds & Roland Hafner & Abbas Abdolmaleki & Diego de las Casas & Craig Donner & Leslie F, 2022. "Magnetic control of tokamak plasmas through deep reinforcement learning," Nature, Nature, vol. 602(7897), pages 414-419, February.
    17. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    18. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Islam, Md. Monirul & Shahbaz, Muhammad & Samargandi, Nahla, 2024. "The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter?," Energy, Elsevier, vol. 293(C).
    2. Hui, Jiuwu, 2024. "Discrete-time integral terminal sliding mode load following controller coupled with disturbance observer for a modular high-temperature gas-cooled reactor," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    2. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    3. Wu, Shifa & Ma, Xiaolong & Liu, Junfeng & Wan, Jiashuang & Wang, Pengfei & Su, G.H., 2023. "A load following control strategy for Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM," Energy, Elsevier, vol. 263(PA).
    4. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    5. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    6. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    7. Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
    8. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    9. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    10. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    11. Cui, Chengcheng & Zhang, Junli & Shen, Jiong, 2023. "System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system," Energy, Elsevier, vol. 283(C).
    12. Yunlong Zhu & Zhe Dong & Xiaojin Huang & Yujie Dong & Yajun Zhang & Zuoyi Zhang, 2022. "Passivity-Based Power-Level Control of Nuclear Reactors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    13. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics," Applied Energy, Elsevier, vol. 364(C).
    15. Islam, Md. Monirul & Shahbaz, Muhammad & Samargandi, Nahla, 2024. "The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter?," Energy, Elsevier, vol. 293(C).
    16. Hui, Jiuwu, 2024. "Discrete-time integral terminal sliding mode load following controller coupled with disturbance observer for a modular high-temperature gas-cooled reactor," Energy, Elsevier, vol. 292(C).
    17. Caputo, Cesare & Cardin, Michel-Alexandre & Ge, Pudong & Teng, Fei & Korre, Anna & Antonio del Rio Chanona, Ehecatl, 2023. "Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning," Applied Energy, Elsevier, vol. 335(C).
    18. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    19. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    20. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.