IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002864.html
   My bibliography  Save this article

Multiple stage stochastic planning of integrated electricity and gas system based on distributed approximate dynamic programming

Author

Listed:
  • Zhang, Houwang
  • Wu, Qiuwei
  • Chen, Jian
  • Lu, Lina
  • Zhang, Jiangfeng
  • Zhang, Shuyi

Abstract

With the increasing coupling of integrated electricity and gas systems, it's essential to implement a proper planning scheme. The planning of the integrated electricity and gas systems usually consists of multiple planning stages and various uncertainties, making the problem difficult to solve. In this paper, combining the approximate dynamic programming method and the alternating direction multiplier method, a distributed approximate dynamic programming based multiple stage stochastic planning scheme is proposed for the integrated electricity and gas systems. The multiple stage stochastic planning scheme realizes the coordination of new installation and expansion of power grid lines, natural gas pipelines, substations, city gates, photovoltaics, wind turbines, gas turbines and energy storage devices, while considering both the long-term and the short-term uncertainties. The multiple stage stochastic planning model is reformulated as a Markov decision process with a sequential decision strategy, in which the investment variables are decided stage by stage with long-term uncertainties gradually revealed in the planning period. The distributed approximate dynamic programming algorithm is used to solve the multiple stage stochastic planning model, which is in the form of the Markov decision process, by decoupling in both temporal and spatial dimensions. Numerical tests on the test system with a 24-node power grid and a 30-node natural gas network verify the effectiveness of the multiple stage stochastic planning model.

Suggested Citation

  • Zhang, Houwang & Wu, Qiuwei & Chen, Jian & Lu, Lina & Zhang, Jiangfeng & Zhang, Shuyi, 2023. "Multiple stage stochastic planning of integrated electricity and gas system based on distributed approximate dynamic programming," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002864
    DOI: 10.1016/j.energy.2023.126892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    2. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    3. Safaie, Amir Abbas & Alizadeh Bidgoli, Mohsen & Javadi, Saeid, 2022. "A multi-objective optimization framework for integrated electricity and natural gas networks considering smart homes in downward under uncertainties," Energy, Elsevier, vol. 239(PC).
    4. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    5. Yamchi, Hamid Bakhshi & Safari, Amin & Guerrero, Josep M., 2021. "A multi-objective mixed integer linear programming model for integrated electricity-gas network expansion planning considering the impact of photovoltaic generation," Energy, Elsevier, vol. 222(C).
    6. Khaligh, Vahid & Anvari-Moghaddam, Amjad, 2019. "Stochastic expansion planning of gas and electricity networks: A decentralized-based approach," Energy, Elsevier, vol. 186(C).
    7. Nikolaos Koutsoukis & Pavlos Georgilakis, 2019. "A Chance-Constrained Multistage Planning Method for Active Distribution Networks," Energies, MDPI, vol. 12(21), pages 1-19, October.
    8. Sun, Qirun & Wu, Zhi & Gu, Wei & Zhu, Tao & Zhong, Lei & Gao, Ting, 2021. "Flexible expansion planning of distribution system integrating multiple renewable energy sources: An approximate dynamic programming approach," Energy, Elsevier, vol. 226(C).
    9. Kizito, Rodney & Liu, Zeyu & Li, Xueping & Sun, Kai, 2022. "Multi-stage stochastic optimization of islanded utility-microgrids design after natural disasters," Operations Research Perspectives, Elsevier, vol. 9(C).
    10. Li, Xinchao & Lu, Shan & Li, Zhe & Wang, Yue & Zhu, Li, 2022. "Modeling and optimization of bioethanol production planning under hybrid uncertainty: A heuristic multi-stage stochastic programming approach," Energy, Elsevier, vol. 245(C).
    11. Hui Liu & Zhenggang Fan & Haimin Xie & Ni Wang, 2022. "Distributionally Robust Joint Chance-Constrained Dispatch for Electricity–Gas–Heat Integrated Energy System Considering Wind Uncertainty," Energies, MDPI, vol. 15(5), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Lu & Yonggang Peng & Jing Sun, 2024. "Dual-Stage Optimization Scheduling Model for a Grid-Connected Renewable Energy System with Hybrid Energy Storage," Energies, MDPI, vol. 17(3), pages 1-19, February.
    2. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    2. Wang, Bangyan & Wang, Xiuli & Wei, Fengting & Shao, Chengcheng & Zhou, Jiahao & Lin, Jintian, 2023. "Multi-stage stochastic planning for a long-term low-carbon transition of island power system considering carbon price uncertainty and offshore wind power," Energy, Elsevier, vol. 282(C).
    3. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    4. Wei, Zhinong & Yang, Li & Chen, Sheng & Ma, Zhoujun & Zang, Haixiang & Fei, Youdie, 2022. "A multi-stage planning model for transitioning to low-carbon integrated electric power and natural gas systems," Energy, Elsevier, vol. 254(PC).
    5. Saravi, Vahid Sabzpoosh & Kalantar, Mohsen & Anvari-Moghaddam, Amjad, 2022. "Resilience-constrained expansion planning of integrated power–gas–heat distribution networks," Applied Energy, Elsevier, vol. 323(C).
    6. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    7. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Mohamed M. Refaat & Shady H. E. Abdel Aleem & Yousry Atia & Ziad M. Ali & Adel El-Shahat & Mahmoud M. Sayed, 2021. "A Mathematical Approach to Simultaneously Plan Generation and Transmission Expansion Based on Fault Current Limiters and Reliability Constraints," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    10. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    11. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    12. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    13. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    14. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    15. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    16. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    17. Henni, Sarah & Staudt, Philipp & Kandiah, Balendra & Weinhardt, Christof, 2021. "Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment," Applied Energy, Elsevier, vol. 288(C).
    18. Leijiao Ge & Jun Yan & Yonghui Sun & Zhongguan Wang, 2022. "Situational Awareness for Smart Distribution Systems," Energies, MDPI, vol. 15(11), pages 1-3, June.
    19. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    20. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.