IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp70-82.html
   My bibliography  Save this article

Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm

Author

Listed:
  • Yuan, Xiaohui
  • Zhang, Binqiao
  • Wang, Pengtao
  • Liang, Ji
  • Yuan, Yanbin
  • Huang, Yuehua
  • Lei, Xiaohui

Abstract

An improved strength Pareto evolutionary algorithm is proposed to solve the multi-objective optimal power flow problem. The fuel cost and emission are considered as two objective functions for the optimal flow problem. In the proposed algorithm, there are three aspects of improvements in the original strength Pareto evolutionary algorithm. First, the external archive population is only composed of the variable size of non-dominated individuals in environmental selection operator. Secondly, the Euclidean distance between the elite individuals and its k-th neighboring individuals is adopted to update the external archive population. Thirdly, the local search strategy is embedded into strength Pareto evolutionary algorithm. The performance of the proposed method has been tested on the IEEE 30-bus and IEEE 57-bus systems. The simulation results show that the proposed method is able to produce well distributed Pareto optimal solutions for the multi-objective optimal power flow problem. Compared with the results obtained by other methods, the superiority of the proposed method is verified.

Suggested Citation

  • Yuan, Xiaohui & Zhang, Binqiao & Wang, Pengtao & Liang, Ji & Yuan, Yanbin & Huang, Yuehua & Lei, Xiaohui, 2017. "Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm," Energy, Elsevier, vol. 122(C), pages 70-82.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:70-82
    DOI: 10.1016/j.energy.2017.01.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panda, Ambarish & Tripathy, M., 2015. "Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm," Energy, Elsevier, vol. 93(P1), pages 816-827.
    2. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    3. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Gonzalo E., 2021. "A multi-objective formulation of improving flexibility in the operation of electric power systems: Application to mitigation measures during the coronavirus pandemic," Energy, Elsevier, vol. 227(C).
    2. Mohammad Zohrul Islam & Mohammad Lutfi Othman & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Saifur Rahman Opu & Abinaya Inbamani & Vishalakshi Annamalai, 2021. "Marine predators algorithm for solving single-objective optimal power flow," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-27, August.
    3. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    4. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    5. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    6. Xiaomin Wu & Weihua Cao & Dianhong Wang & Min Ding, 2019. "A Multi-Objective Optimization Dispatch Method for Microgrid Energy Management Considering the Power Loss of Converters," Energies, MDPI, vol. 12(11), pages 1-19, June.
    7. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    8. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    9. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Hasanien, Hany M. & Ginidi, Ahmed R., 2022. "An improved heap optimization algorithm for efficient energy management based optimal power flow model," Energy, Elsevier, vol. 250(C).
    10. Mohammad Zohrul Islam & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Hashim Hizam & Nashiren Farzilah Mailah & Josep M. Guerrero & Mohamad Nasrun Mohd Nasir, 2020. "A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission," Sustainability, MDPI, vol. 12(13), pages 1-25, June.
    11. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    12. Yin, Linfei & Wang, Tao & Wang, Senlin & Zheng, Baomin, 2019. "Interchange objective value method for distributed multi-objective optimization: Theory, application, implementation," Applied Energy, Elsevier, vol. 239(C), pages 1066-1076.
    13. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    14. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    15. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    16. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    17. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    18. Sarjiya, & Budi, Rizki Firmansyah Setya & Hadi, Sasongko Pramono, 2019. "Game theory for multi-objective and multi-period framework generation expansion planning in deregulated markets," Energy, Elsevier, vol. 174(C), pages 323-330.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud A. Ali & Salah Kamel & Mohamed H. Hassan & Emad M. Ahmed & Mohana Alanazi, 2022. "Optimal Power Flow Solution of Power Systems with Renewable Energy Sources Using White Sharks Algorithm," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    2. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    3. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    4. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    5. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    6. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    7. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    8. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    9. Nguyen, Thang Trung, 2019. "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," Energy, Elsevier, vol. 171(C), pages 218-240.
    10. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    11. Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Alberto Pliego Marugán & Fausto Pedro García Márquez, 2021. "A Hybrid Jaya–Powell’s Pattern Search Algorithm for Multi-Objective Optimal Power Flow Incorporating Distributed Generation," Energies, MDPI, vol. 14(10), pages 1-24, May.
    12. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    13. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    14. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    15. Panda, Ambarish & Tripathy, M. & Barisal, A.K. & Prakash, T., 2017. "A modified bacteria foraging based optimal power flow framework for Hydro-Thermal-Wind generation system in the presence of STATCOM," Energy, Elsevier, vol. 124(C), pages 720-740.
    16. Weng, Xuemeng & Xuan, Ping & Heidari, Ali Asghar & Cai, Zhennao & Chen, Huiling & Mansour, Romany F. & Ragab, Mahmoud, 2023. "A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems," Energy, Elsevier, vol. 271(C).
    17. El Sehiemy, Ragab A. & Selim, F. & Bentouati, Bachir & Abido, M.A., 2020. "A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems," Energy, Elsevier, vol. 193(C).
    18. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    19. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    20. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:70-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.