IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221003157.html
   My bibliography  Save this article

Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor

Author

Listed:
  • Hui, Jiuwu
  • Yuan, Jingqi

Abstract

The load following of nuclear power plants (NPPs) has been a contentious issue in the control field. In this paper, we propose a chattering-free higher order sliding mode control scheme with a high-gain observer for the load following of a pressurized water reactor (PWR) in the presence of lumped disturbances owing to model uncertainties and external disturbances. The mathematical model of the PWR system is first set up in the form of an affine nonlinear equation. Subsequently, a high-gain observer, which achieves accurate estimations of the unmeasured state and lumped disturbances, is designed. Based on the outputs of the high-gain observer, we develop a chattering-free higher order sliding mode controller to improve the load-following performance while dealing with lumped disturbances and estimation errors of the high-gain observer. In contrast to some previous sliding mode controllers for the load following of NPPs, the proposed controller is completely free from chattering effects because the control input is obtained after integration. The asymptotic stability of the overall control scheme is demonstrated by combining the Lyapunov stability theory with backstepping technology. Finally, the simulation results reveal that the maximum absolute power error is less than 1×104W with the proposed control scheme, 5×105W with a PID controller, and 4×105W with a conventional sliding mode controller. In addition, in contrast to the conventional sliding mode controller, the proposed control scheme produces smooth control input without the chattering phenomenon. Thus, the proposed chattering-free higher order sliding mode control scheme with a high-gain observer provides smoother control input, higher load-following accuracy, and stronger robustness against lumped disturbances than the PID controller and the conventional sliding mode controller.

Suggested Citation

  • Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003157
    DOI: 10.1016/j.energy.2021.120066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gralla, Fabienne & Abson, David J. & Møller, Anders P. & Lang, Daniel J. & von Wehrden, Henrik, 2017. "Energy transitions and national development indicators: A global review of nuclear energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1251-1265.
    2. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    3. Locatelli, Giorgio & Boarin, Sara & Fiordaliso, Andrea & Ricotti, Marco E., 2018. "Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: A techno-economic analysis," Energy, Elsevier, vol. 148(C), pages 494-505.
    4. Lior, Noam, 2012. "Sustainable energy development (May 2011) with some game-changers," Energy, Elsevier, vol. 40(1), pages 3-18.
    5. Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
    6. Locatelli, Giorgio & Boarin, Sara & Pellegrino, Francesco & Ricotti, Marco E., 2015. "Load following with Small Modular Reactors (SMR): A real options analysis," Energy, Elsevier, vol. 80(C), pages 41-54.
    7. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    8. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    9. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    10. Sayyaadi, Hoseyn & Sabzaligol, Tooraj, 2010. "Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants," Energy, Elsevier, vol. 35(7), pages 2953-2964.
    11. Dong, Zhe & Pan, Yifei, 2018. "A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant," Energy, Elsevier, vol. 145(C), pages 638-656.
    12. Ma, Quan & Wei, Xinyu & Qing, Junyan & Jiao, Wen & Xu, Risheng, 2019. "Load following of SMR based on a flexible load," Energy, Elsevier, vol. 183(C), pages 733-746.
    13. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerkšič, Samo & Vrančić, Damir & Čalič, Dušan & Žerovnik, Gašper & Trkov, Andrej & Kromar, Marjan & Snoj, Luka, 2023. "A perspective of using nuclear power as a dispatchable power source for covering the daily fluctuations of solar power," Energy, Elsevier, vol. 284(C).
    2. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    3. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    4. Hui, Jiuwu, 2024. "Discrete-time integral terminal sliding mode load following controller coupled with disturbance observer for a modular high-temperature gas-cooled reactor," Energy, Elsevier, vol. 292(C).
    5. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "Load following control of a PWR with load-dependent parameters and perturbations via fixed-time fractional-order sliding mode and disturbance observer techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    7. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    2. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    3. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    4. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    5. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    6. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    7. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    8. Wu, Shifa & Ma, Xiaolong & Liu, Junfeng & Wan, Jiashuang & Wang, Pengfei & Su, G.H., 2023. "A load following control strategy for Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM," Energy, Elsevier, vol. 263(PA).
    9. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    10. Cui, Chengcheng & Zhang, Junli & Shen, Jiong, 2023. "System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system," Energy, Elsevier, vol. 283(C).
    11. Yunlong Zhu & Zhe Dong & Xiaojin Huang & Yujie Dong & Yajun Zhang & Zuoyi Zhang, 2022. "Passivity-Based Power-Level Control of Nuclear Reactors," Energies, MDPI, vol. 15(14), pages 1-11, July.
    12. Ma, Quan & Wei, Xinyu & Qing, Junyan & Jiao, Wen & Xu, Risheng, 2019. "Load following of SMR based on a flexible load," Energy, Elsevier, vol. 183(C), pages 733-746.
    13. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    14. Hui, Jiuwu, 2024. "Discrete-time integral terminal sliding mode load following controller coupled with disturbance observer for a modular high-temperature gas-cooled reactor," Energy, Elsevier, vol. 292(C).
    15. Zhang, Ru & Qiu, Leilei & Sun, Peiwei & Wei, Xinyu, 2024. "Research on nuclear reactor power control system of VVER-1000 with thermal energy supply system," Energy, Elsevier, vol. 294(C).
    16. Wang, Linna & Chen, Chuqi & Chen, Lekang & Li, Zheng & Zeng, Wenjie, 2023. "A coordinated control methodology for small pressurized water reactor with steam dump control system," Energy, Elsevier, vol. 282(C).
    17. Michaelson, D. & Jiang, J., 2021. "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    19. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.