IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp695-707.html
   My bibliography  Save this article

Practical dynamic matrix control of MHTGR-based nuclear steam supply systems

Author

Listed:
  • Jiang, Di
  • Dong, Zhe

Abstract

To balance the intermittent renewable energy and cope with the increasing nuclear power installed capacity in China, it is necessary for nuclear power plants (NPPs) to operate with load-following mode for enhancing economic competitiveness. The modular high temperature gas-cooled reactor (MHTGR) is an appropriate candidate for load-following operation due to the advanced features such as robust fuel elements, online fueling and full-power-range temperature negative feedback. The MHTGR-based nuclear steam supply systems (NSSS) which produces superheated steam flow for electricity, is the core for any NPPs. The proper control of NSSS is the prerequisite for the safe, stable and efficient load-following operation. However, in current engineering practice, the set-point trajectories of neutron flux, primary coolant temperature, primary and secondary flowrates are just the curves by linking the referenced steady values from the thermal hydraulic design, which are further determined by the thermal power requirement. Thus, it is meaningful to investigate an optimization-oriented control method to improve the operation efficiency. Motivated by this, two dynamic matrix control (DMC) with cascade structure are presented to improve both thermal power and steam temperature of the MHTGR-based NSSS. The thermal power is optimized by the first DMC through adjusting the set-point of nuclear flux. The second DMC is then designed based on the integration of the NSSS, the proportional-integral-derivative (PID) and the first DMC to improve the steam temperature response by adjusting the feed-water flowrate. The control performance during wide range operation is shown and discussed with the simulation results of a large-scale MHTGR plant model.

Suggested Citation

  • Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:695-707
    DOI: 10.1016/j.energy.2019.07.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931429X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    2. Lykidi, Maria & Gourdel, Pascal, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," Energy, Elsevier, vol. 85(C), pages 167-180.
    3. Pascal Gourdel & Maria Lykidi, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," PSE-Ecole d'économie de Paris (Postprint) hal-01477134, HAL.
    4. Di Jiang & Zhe Dong & Miao Liu & Xiaojin Huang, 2018. "Dynamic Matrix Control for the Thermal Power of MHTGR-Based Nuclear Steam Supply System," Energies, MDPI, vol. 11(10), pages 1-15, October.
    5. Garcia, Humberto E. & Chen, Jun & Kim, Jong S. & Vilim, Richard B. & Binder, William R. & Bragg Sitton, Shannon M. & Boardman, Richard D. & McKellar, Michael G. & Paredis, Christiaan J.J., 2016. "Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems," Energy, Elsevier, vol. 107(C), pages 234-258.
    6. Pascal Gourdel & Maria Lykidi, 2015. "How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?," Post-Print hal-01477134, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    2. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
    3. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    4. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).
    5. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    6. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    7. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    8. Wu, Shifa & Ma, Xiaolong & Liu, Junfeng & Wan, Jiashuang & Wang, Pengfei & Su, G.H., 2023. "A load following control strategy for Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM," Energy, Elsevier, vol. 263(PA).
    9. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    10. Hui, Jiuwu & Yuan, Jingqi, 2021. "Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor," Energy, Elsevier, vol. 223(C).
    11. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhe & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems," Energy, Elsevier, vol. 151(C), pages 116-125.
    2. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    3. Zhe Dong & Yifei Pan & Zuoyi Zhang & Yujie Dong & Xiaojin Huang, 2017. "Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant," Energies, MDPI, vol. 10(11), pages 1-21, November.
    4. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2017. "Model-free adaptive control law for nuclear superheated-steam supply systems," Energy, Elsevier, vol. 135(C), pages 53-67.
    5. Dong, Zhe & Pan, Yifei, 2018. "A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant," Energy, Elsevier, vol. 145(C), pages 638-656.
    6. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    7. Srikanth Reddy & Lokesh Panwar & Bijaya Ketan Panigrahi & Rajesh Kumar & Lalit Goel & Ameena Saad Al-Sumaiti, 2020. "A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration," Energy & Environment, , vol. 31(4), pages 549-569, June.
    8. Crampes, Claude & Renault, Jérôme, 2018. "Supply flexibility in electricity markets," TSE Working Papers 18-964, Toulouse School of Economics (TSE).
    9. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    10. Lykidi, Maria & Gourdel, Pascal, 2017. "Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case," Energy, Elsevier, vol. 132(C), pages 171-185.
    11. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    12. Dong, Zhe & Pan, Yifei & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2018. "Dynamical modeling and simulation of the six-modular high temperature gas-cooled reactor plant HTR-PM600," Energy, Elsevier, vol. 155(C), pages 971-991.
    13. Chen, Yingwen & Chen, Liuliu & Li, Peiwen & Xu, Yuan & Fan, Mengjie & Zhu, Shemin & Shen, Shubao, 2016. "Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes," Energy, Elsevier, vol. 109(C), pages 620-628.
    14. Crampes, Claude & Renault, Jérôme, 2019. "How many markets for wholesale electricity when supply ispartially flexible?," Energy Economics, Elsevier, vol. 81(C), pages 465-478.
    15. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    16. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    17. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    18. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    19. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    20. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:695-707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.