IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016647.html
   My bibliography  Save this article

Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump

Author

Listed:
  • Ji, Qiang
  • Che, Chunwen
  • Yin, Yonggao
  • Huang, Gongsheng
  • Pan, Tengxiang
  • Zhao, Donglin
  • Wang, Yikai

Abstract

Independent cascade hybrid heat pump (ICHHP) can bridge the large temperature gap between low-grade air sources and high-temperature industrial demands. However, the working fluids used in previous studies are just considered sufficient as long as they perform their functional role. They may not always be the most suitable choices in different situations, and the maximum efficiency of ICHHP has not been achieved. Ionic liquids (ILs) as alternative absorbents have shown the potential to enhance ICHHP performance with their unique ability to tailor thermal properties by freely combining anions and cations. However, the scarcity of IL thermodynamic properties data, underscored by limited vapor-liquid equilibrium experiments, has impeded the full exploitation of this inherent advantage. Obviously, the lack of dedicated research on screening optimal working fluids limits ICHHP performance. To address the identified limitations, the optimal fluid is recommended in this paper by comprehensively evaluating the performance among 100 fluid combinations under different working conditions. The results indicate that R161 is the best choice for the compression subloop. For the absorption subloop, the performance improvement is more sensitive to the anionic species, with the order of influence generally being [OAC]− > [Br]− > [OMS]− > [TFA]−. Specifically, H2O/[EMIM][OAC]—R161 stands out, with maximum improvements in coefficient of performance (COP) and exergy coefficient of performance of 9.4% and 5.6%, respectively, compared to other candidates. Furthermore, it doubles the COP relative to the reference fluid H2O/LiBr—R134a. Consequently, H2O/[EMIM][OAC]—R161 is the superior working fluid, significantly advancing industrial heating efficiency for ICHHP in large temperature lift conditions.

Suggested Citation

  • Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016647
    DOI: 10.1016/j.apenergy.2024.124281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.