IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics036054422302683x.html
   My bibliography  Save this article

Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study

Author

Listed:
  • Yu, Wei
  • Liu, Chao
  • Tan, Luxi
  • Li, Qibin
  • Xin, Liyong
  • Wang, Shukun

Abstract

The thermal stability and decomposition mechanism of octamethyltrisiloxane (MDM) were studied using a combination of experimental, ReaxFF simulation, and DFT calculation techniques. After heating MDM for 24 h at 250 °C and 1 MPa, the signature product CH4 was detected, along with liquid products such as hexamethyldisiloxane (MM) and decamethyltetrasiloxane (MD2M). The decomposition rate of MDM remained relatively constant in the temperature range of 250 °C–320 °C but exhibited a sharp increase at 350 °C. Higher pressure was found to promote MDM polymerization. The oxygen (O) atoms displayed a large negative electrostatic potential, while the hydrogen (H) and silicon (Si) atoms exhibited a large positive potential. The electrostatic interaction facilitated the rearrangement reactions, with O and carbon (C) atoms being the most reactive for electrophilic and free radical reactions. The thermal decomposition of MDM initiated with the cleavage of Si–C bonds. Hydrogen extraction reactions between methyl radicals and MDM, as well as Si–O bond rearrangement reactions of demethylated radicals with MDM, further promoted MDM decomposition and the formation of CH4 and siloxane oligomers. These findings are significant for the safe application of MDM as a working fluid in ORC system.

Suggested Citation

  • Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302683x
    DOI: 10.1016/j.energy.2023.129289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302683X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Bin & Zhou, Chenyu & Qin, Lianggen & Fan, Kexin & Xue, Jiewen & Guo, Yun, 2022. "Quantum chemistry simulation and kinetic analysis of organic nitrogen transfer during oil shale pyrolysis," Energy, Elsevier, vol. 256(C).
    2. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Zhenbo, 2023. "Investigation on reaction mechanism for CO2 gasification of softwood lignin by ReaxFF MD method," Energy, Elsevier, vol. 267(C).
    3. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    4. Fernández, F.J. & Prieto, M.M. & Suárez, I., 2011. "Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids," Energy, Elsevier, vol. 36(8), pages 5239-5249.
    5. Gioele Di Marcoberardino & Costante Mario Invernizzi & Paolo Iora & Luca Arosio & Marcello Canavese & Angelo Lunghi & Antonella Mazzei, 2022. "Thermal Stability and Thermodynamic Performances of Pure Siloxanes and Their Mixtures in Organic Rankine Cycles," Energies, MDPI, vol. 15(10), pages 1-20, May.
    6. Chen, Yubo & Yang, Zhao & Lv, Zijian & Zhang, Yong & Li, Jie & Fei, Teng, 2023. "Combustion mechanism and product characteristics of 2,3,3,3-tetrafluoropropene as an environmentally friendly working fluid for organic Rankine cycle," Energy, Elsevier, vol. 268(C).
    7. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Haigang & Li, Yuehuan & Liu, Yibo & Wang, Zhenbo, 2022. "Microscopic reaction mechanism for CO2 gasification of cellulose based on reactive force field molecular dynamics simulations," Renewable Energy, Elsevier, vol. 200(C), pages 334-343.
    8. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    9. Keulen, L. & Gallarini, S. & Landolina, C. & Spinelli, A. & Iora, P. & Invernizzi, C. & Lietti, L. & Guardone, A., 2018. "Thermal stability of hexamethyldisiloxane and octamethyltrisiloxane," Energy, Elsevier, vol. 165(PB), pages 868-876.
    10. Liu, Xiangyang & Wang, Tao & Chu, Jianchun & He, Maogang & Li, Qibin & Zhang, Ying, 2020. "Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations," Renewable Energy, Elsevier, vol. 161(C), pages 858-866.
    11. Tobias G. Erhart & Jürgen Gölz & Ursula Eicker & Martijn Van den Broek, 2016. "Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling," Energies, MDPI, vol. 9(6), pages 1-16, May.
    12. Huo, Erguang & Hu, Zheng & Wang, Shukun & Xin, Liyong & Bai, Mengna, 2022. "Thermal decomposition and interaction mechanism of HFC-227ea/n-hexane as a zeotropic working fluid for organic Rankine cycle," Energy, Elsevier, vol. 246(C).
    13. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    14. Hong, Dikun & Li, Ping & Si, Ting & Guo, Xin, 2021. "ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene," Energy, Elsevier, vol. 218(C).
    15. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    16. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wei & Liu, Chao & Ban, Xijie & Li, Zhirong & Yan, Tianlong & Xin, Liyong & Wang, Shukun, 2024. "A novel method for predicting the thermal stabilization temperature of organic Rankine cycle system working fluids based on transition state theory," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    2. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    3. Zhan, Taotao & Chen, Yuhang & Dong, Ao & He, Maogang & Zhang, Ying, 2023. "Intrinsic-group-contribution PC-SAFT and its application in performance analysis of high-temperature organic Rankine cycle with siloxanes and alkanes," Energy, Elsevier, vol. 278(PA).
    4. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    5. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    6. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    7. Markus Preißinger & Dieter Brüggemann, 2017. "Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities," Energies, MDPI, vol. 10(3), pages 1-23, February.
    8. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    9. Gallarini, Simone & Spinelli, Andrea & Lietti, Luca & Guardone, Alberto, 2023. "Thermal stability of linear siloxanes and their mixtures," Energy, Elsevier, vol. 278(C).
    10. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    11. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    12. Khatita, Mohammed A. & Ahmed, Tamer S. & Ashour, Fatma. H. & Ismail, Ibrahim M., 2014. "Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: A case study," Energy, Elsevier, vol. 64(C), pages 462-472.
    13. Gioele Di Marcoberardino & Costante Mario Invernizzi & Paolo Iora & Luca Arosio & Marcello Canavese & Angelo Lunghi & Antonella Mazzei, 2022. "Thermal Stability and Thermodynamic Performances of Pure Siloxanes and Their Mixtures in Organic Rankine Cycles," Energies, MDPI, vol. 15(10), pages 1-20, May.
    14. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    15. Nami, Hossein & Ertesvåg, Ivar S. & Agromayor, Roberto & Riboldi, Luca & Nord, Lars O., 2018. "Gas turbine exhaust gas heat recovery by organic Rankine cycles (ORC) for offshore combined heat and power applications - Energy and exergy analysis," Energy, Elsevier, vol. 165(PB), pages 1060-1071.
    16. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    17. Zhang, Yun & Zhang, Chuanbiao & Li, Wenjuan & Xiao, Qiuping & Jiao, Fengyuan & Xu, Sen & Lan, Yanhua & Fu, Yizheng & Shu, Chi-Min & Cao, Weiguo, 2023. "Reaction mechanism of stearic acid pyrolysis via reactive molecular dynamics simulation and TG-IR technology," Renewable Energy, Elsevier, vol. 217(C).
    18. Chen, Yubo & Yang, Zhao & Zhang, Yong & He, Hongxia & Li, Jie, 2023. "Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid," Energy, Elsevier, vol. 284(C).
    19. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    20. Piotr Kolasiński, 2015. "The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC) System," Energies, MDPI, vol. 8(5), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302683x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.