IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222016127.html
   My bibliography  Save this article

Quantum chemistry simulation and kinetic analysis of organic nitrogen transfer during oil shale pyrolysis

Author

Listed:
  • Chen, Bin
  • Zhou, Chenyu
  • Qin, Lianggen
  • Fan, Kexin
  • Xue, Jiewen
  • Guo, Yun

Abstract

The nitrogen in oil shale would cause the generation of heteroatomic compounds during the pyrolysis, causing fuel instability, viscosity increase, glue formation and discoloration. To explore the formation mechanism of the nitrogenous substances, the relevant reaction paths and the corresponding kinetic analysis during the pyrolysis were constructed and conducted in this paper. Through quantum chemical transition state theory combing with density functional theory, the energy of reactants, transition states and intermediates involving in the reaction was obtained. Moreover, the energy distribution diagrams were also constructed to further clarify the formation mechanism of typical organic nitrogen product. In the exist of some functional groups like hydroxy, the N-containing rings such as pyrrole and pyridine are more easily to be opened, generating NH3 and NO. Five kinds of pathways constructed by this paper were chosen as the representational paths for revealing the micro theoretical mechanism of organic nitrogen conversion in oil shale. The results could provide reliable theoretical basis for investigating the conversion mechanism of nitrogen in oil shale pyrolysis and further reducing the NOx emission in the future.

Suggested Citation

  • Chen, Bin & Zhou, Chenyu & Qin, Lianggen & Fan, Kexin & Xue, Jiewen & Guo, Yun, 2022. "Quantum chemistry simulation and kinetic analysis of organic nitrogen transfer during oil shale pyrolysis," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222016127
    DOI: 10.1016/j.energy.2022.124709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greene, David L. & Hopson, Janet L. & Li, Jia, 2006. "Have we run out of oil yet? Oil peaking analysis from an optimist's perspective," Energy Policy, Elsevier, vol. 34(5), pages 515-531, March.
    2. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    3. Yu, Zhaosheng & Dai, Minquan & Huang, Manman & Fang, Shiwen & Xu, Jiachen & Lin, Yan & Ma, Xiaoqian, 2018. "Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: Analytical Py-GC/MS study," Renewable Energy, Elsevier, vol. 125(C), pages 465-471.
    4. He, Lu & Ma, Yue & Tan, Ting & Yue, Changtao & Li, Shuyuan & Tang, Xun, 2021. "Mechanisms of sulfur and nitrogen transformation during Longkou oil shale pyrolysis," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
    2. Sena, Marcelo Fonseca Monteiro de & Rosa, Luiz Pinguelli & Szklo, Alexandre, 2013. "Will Venezuelan extra-heavy oil be a significant source of petroleum in the next decades?," Energy Policy, Elsevier, vol. 61(C), pages 51-59.
    3. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    4. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Jashim Uddin Ahmed & Hafiza Sultana & Md. Muinuddin Khan, 2018. "Saudi Aramco: A Blend between Profit and Politics," FIIB Business Review, , vol. 7(2), pages 88-99, June.
    6. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    7. Malik Curuk & Suphi Sen, 2023. "Climate Policy and Resource Extraction with Variable Markups and Imperfect Substitutes," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1091-1120.
    8. John S. Hill & Myung-Su Chae & Jinseo Park, 2012. "The Effects of Geography and Infrastructure on Economic Development and International Business Involvement," Journal of Infrastructure Development, India Development Foundation, vol. 4(2), pages 91-113, December.
    9. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    10. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    11. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
    12. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    13. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    14. Pablo Druetta & Francesco Picchioni, 2019. "Simulation of Surfactant Oil Recovery Processes and the Role of Phase Behaviour Parameters," Energies, MDPI, vol. 12(6), pages 1-30, March.
    15. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    16. Talal AL-Bazali & Mohammad Al-Zuhair, 2022. "The Use of Fuzzy Logic to Assess Sustainability of Oil and Gas Resources (R/P): Technical, Economic and Political Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 449-458, March.
    17. James Lennox, 2012. "Impacts of High Oil Prices on Tourism in New Zealand," Tourism Economics, , vol. 18(4), pages 781-800, August.
    18. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    19. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    20. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222016127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.