IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022205.html
   My bibliography  Save this article

Thermal stability and pyrolysis mechanism of decamethyltetrasiloxane (MD2M) as a working fluid for organic Rankine cycle

Author

Listed:
  • Ban, Xijie
  • Yu, Wei
  • Liu, Chao

Abstract

The thermal stability of working fluids is a crucial property studied in the selection of organic Rankine cycle fluids, as they may undergo decomposition at elevated temperatures. In previous studies, siloxanes have been identified as promising choices for ORCs. However, research on the thermal stability of siloxanes in ORCs has been relatively limited. This study investigates the thermal stability and pyrolysis mechanism of MD2M through a combination of experiment, DFT simulation, and ReaxFF-MD calculation. The experiment revealed that MD2M exhibits poor thermal stability, with a decomposition rate of approximately 1.82 % at 200 °C in 72h. Consequently, it is unsuitable for operating in ORCs at temperatures of 200 °C and above. The primary gas products in the pyrolysis of MD2M include CH4, C2H6, C2H4, CO, and CO2, among others. ReaxFF-MD and DFT elucidated the thermal decomposition mechanism of MD2M. The Gibbs free energy barriers for Si–C bond cleavage reactions are relatively lowest, measured at 352.98 and 341.33 kJ mol−1, respectively. Simultaneously, methylation of the terminal Si atom is likely to represent the primary reaction pathway for the initial decomposition.

Suggested Citation

  • Ban, Xijie & Yu, Wei & Liu, Chao, 2024. "Thermal stability and pyrolysis mechanism of decamethyltetrasiloxane (MD2M) as a working fluid for organic Rankine cycle," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022205
    DOI: 10.1016/j.energy.2024.132446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    2. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
    3. Świerzewski, Mateusz & Kalina, Jacek, 2020. "Optimisation of biomass-fired cogeneration plants using ORC technology," Renewable Energy, Elsevier, vol. 159(C), pages 195-214.
    4. Keulen, L. & Gallarini, S. & Landolina, C. & Spinelli, A. & Iora, P. & Invernizzi, C. & Lietti, L. & Guardone, A., 2018. "Thermal stability of hexamethyldisiloxane and octamethyltrisiloxane," Energy, Elsevier, vol. 165(PB), pages 868-876.
    5. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    6. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    7. Tobias G. Erhart & Jürgen Gölz & Ursula Eicker & Martijn Van den Broek, 2016. "Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling," Energies, MDPI, vol. 9(6), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
    2. Gallarini, Simone & Spinelli, Andrea & Lietti, Luca & Guardone, Alberto, 2023. "Thermal stability of linear siloxanes and their mixtures," Energy, Elsevier, vol. 278(C).
    3. Gioele Di Marcoberardino & Costante Mario Invernizzi & Paolo Iora & Luca Arosio & Marcello Canavese & Angelo Lunghi & Antonella Mazzei, 2022. "Thermal Stability and Thermodynamic Performances of Pure Siloxanes and Their Mixtures in Organic Rankine Cycles," Energies, MDPI, vol. 15(10), pages 1-20, May.
    4. Mascuch, Jakub & Novotny, Vaclav & Spale, Jan & Vodicka, Vaclav & Zeleny, Zbynek, 2021. "Experience from set-up and pilot operation of an in-house developed biomass-fired ORC microcogeneration unit," Renewable Energy, Elsevier, vol. 165(P1), pages 251-260.
    5. Yu, Wei & Liu, Chao & Ban, Xijie & Li, Zhirong & Yan, Tianlong & Xin, Liyong & Wang, Shukun, 2024. "A novel method for predicting the thermal stabilization temperature of organic Rankine cycle system working fluids based on transition state theory," Energy, Elsevier, vol. 292(C).
    6. Costante M. Invernizzi & Abubakr Ayub & Gioele Di Marcoberardino & Paolo Iora, 2019. "Pure and Hydrocarbon Binary Mixtures as Possible Alternatives Working Fluids to the Usual Organic Rankine Cycles Biomass Conversion Systems," Energies, MDPI, vol. 12(21), pages 1-17, October.
    7. Spale, Jan & Vodicka, Vaclav & Zeleny, Zbynek & Pavlicko, Jan & Mascuch, Jakub & Novotny, Vaclav, 2022. "Scaling up a woodchip-fired containerized CHP ORC unit toward commercialization," Renewable Energy, Elsevier, vol. 199(C), pages 1226-1236.
    8. Costante Mario Invernizzi & Nadeem Ahmed Sheikh, 2018. "High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    10. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    11. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    12. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    13. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.
    14. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    15. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    16. Steffen, Michael & Löffler, Michael & Schaber, Karlheinz, 2013. "Efficiency of a new Triangle Cycle with flash evaporation in a piston engine," Energy, Elsevier, vol. 57(C), pages 295-307.
    17. Petr, Philipp & Raabe, Gabriele, 2015. "Evaluation of R-1234ze(Z) as drop-in replacement for R-245fa in Organic Rankine Cycles – From thermophysical properties to cycle performance," Energy, Elsevier, vol. 93(P1), pages 266-274.
    18. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.
    19. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    20. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.