IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp858-866.html
   My bibliography  Save this article

Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations

Author

Listed:
  • Liu, Xiangyang
  • Wang, Tao
  • Chu, Jianchun
  • He, Maogang
  • Li, Qibin
  • Zhang, Ying

Abstract

Understanding the micro-mechanism of lignin gasification in supercritical water is meaningful for improving the energy conversion efficiency of biomass. In this work, the molecular model of guaiacyl dimer lignin with γ-O-4 linkages is built and the gasification processes of it in supercritical water at 9 different temperatures between 2000 K and 6000 K are studied by ReaxFF molecular dynamics simulations for the first time. The cleavage mechanism of γ-O-4 lignin and the generation pathways of gases were analyzed. During the gasification process of γ-O-4 lignin, H2 and CO are abundantly generated, while supercritical water contributes the most H and O molecules for them. Temperature are found to play important role in the products and rate of the cleavage of lignin.

Suggested Citation

  • Liu, Xiangyang & Wang, Tao & Chu, Jianchun & He, Maogang & Li, Qibin & Zhang, Ying, 2020. "Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations," Renewable Energy, Elsevier, vol. 161(C), pages 858-866.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:858-866
    DOI: 10.1016/j.renene.2020.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Hui & Wang, Huibo & Wu, Zhenqun & Ren, Zhenhua & Ou, Zhisong, 2019. "Numerical investigation on drag coefficient and flow characteristics of two biomass spherical particles in supercritical water," Renewable Energy, Elsevier, vol. 138(C), pages 11-17.
    2. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    3. Adamu, Sagir & Binous, Housam & Razzak, Shaikh A. & Hossain, Mohammad M., 2017. "Enhancement of glucose gasification by Ni/La2O3-Al2O3 towards the thermodynamic extremum at supercritical water conditions," Renewable Energy, Elsevier, vol. 111(C), pages 399-409.
    4. Pires de Oliveira, Ivan & Caires, Anderson Rodrigues Lima, 2019. "Molecular arrangement in diesel/biodiesel blends: A Molecular Dynamics simulation analysis," Renewable Energy, Elsevier, vol. 140(C), pages 203-211.
    5. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    2. Zhang, Yun & Zhang, Chuanbiao & Li, Wenjuan & Xiao, Qiuping & Jiao, Fengyuan & Xu, Sen & Lan, Yanhua & Fu, Yizheng & Shu, Chi-Min & Cao, Weiguo, 2023. "Reaction mechanism of stearic acid pyrolysis via reactive molecular dynamics simulation and TG-IR technology," Renewable Energy, Elsevier, vol. 217(C).
    3. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
    4. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Zhenbo, 2023. "Investigation on reaction mechanism for CO2 gasification of softwood lignin by ReaxFF MD method," Energy, Elsevier, vol. 267(C).
    5. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Haigang & Li, Yuehuan & Liu, Yibo & Wang, Zhenbo, 2022. "Microscopic reaction mechanism for CO2 gasification of cellulose based on reactive force field molecular dynamics simulations," Renewable Energy, Elsevier, vol. 200(C), pages 334-343.
    6. Chen, Jingwei & Wang, Chenxi & Shang, Wenxue & Bai, Yu & Wu, Xiaomin, 2023. "Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haiping & Huang, Baolian & Sun, Aijun, 2023. "How do mineral resources influence eco-sustainability in China? Dynamic role of renewable energy and green finance," Resources Policy, Elsevier, vol. 85(PA).
    2. Mohammad Mafizur Rahman & Nahid Sultana, 2024. "Nexus of Human Development and Environmental Quality in Low-Income and Developing Countries: Do Renewable Energy and Good Governance Matter?," Sustainability, MDPI, vol. 16(13), pages 1-18, June.
    3. Martín Olivera & Verónica Segarra, 2021. "Calidad ambiental y crecimiento económico: análisis dinámico para América Latina y el Caribe," Revista de Economía del Rosario, Universidad del Rosario, vol. 24(2), December.
    4. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    5. Liton Chandra Voumik & Md. Azharul Islam & Abidur Rahaman & Md. Maznur Rahman, 2022. "Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.
    6. Passos, Wilson E. & Oliveira, Ivan P. & Michels, Flávio S. & Trindade, Magno A.G. & Falcão, Evaristo A. & Marangoni, Bruno S. & Oliveira, Samuel L. & Caires, Anderson R.L., 2021. "Quantification of water in bioethanol using rhodamine B as an efficient molecular optical probe," Renewable Energy, Elsevier, vol. 165(P2), pages 42-51.
    7. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    8. Zaharil, H.A. & Hasanuzzaman, M., 2020. "Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition," Renewable Energy, Elsevier, vol. 149(C), pages 22-41.
    9. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    10. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    11. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    12. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    13. Ehigiamusoe, Kizito Uyi & Dogan, Eyup, 2022. "The role of interaction effect between renewable energy consumption and real income in carbon emissions: Evidence from low-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Sandra Chukwudumebi Obiora & Olusola Bamisile & Evans Opoku-Mensah & Adasa Nkrumah Kofi Frimpong, 2020. "Impact of Banking and Financial Systems on Environmental Sustainability: An Overarching Study of Developing, Emerging, and Developed Economies," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    15. Ahmed Samour & Omar Ikbal Tawfik & Magdalena Radulescu & Cristina Florentina Baldan, 2023. "Do Oil Price, Renewable Energy, and Financial Development Matter for Environmental Quality in Oman? Novel Insights from Augmented ARDL Approach," Energies, MDPI, vol. 16(12), pages 1-14, June.
    16. Md. Hasanur Rahman & Liton Chandra Voumik & Md. Jamsedul Islam & Md. Abdul Halim & Miguel Angel Esquivias, 2022. "Economic Growth, Energy Mix, and Tourism-Induced EKC Hypothesis: Evidence from Top Ten Tourist Destinations," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    17. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.
    18. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    19. Fan, Weiyang & Hao, Yu, 2020. "An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China," Renewable Energy, Elsevier, vol. 146(C), pages 598-609.
    20. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:858-866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.