IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924016210.html
   My bibliography  Save this article

Analysis of cyclic thermodynamic system combining ammonia gas turbine and transcritical carbon dioxide

Author

Listed:
  • Shen, Zhixuan
  • Liang, Shiqiang
  • Chen, Kai
  • Zhu, Yuming
  • Wang, Bo

Abstract

Ammonia has attracted significant research attention due to its high hydrogen content and lack of elemental carbon. Unfortunately, the thermal efficiency of ammonia gas turbines is relatively low. To address this problem, this paper proposes a cyclic system that combines an ammonia gas turbine with the T-CO2 power cycle. The cycle, based on comprehensive energy distribution and utilization, makes full use of the cooling capacity of liquid ammonia fuel to cool CO2 below the critical point and uses the waste heat of the ammonia gas turbine in stages. The paper begins by establishing and validating a thermodynamic model of the combined cycle. Numerical simulations show that, under the basic operating conditions, the energy efficiency of the combined cycle is 53.44%. Next, an analysis of the regenerator of the bottom cycle shows that it introduces a low heat source, which avoids a pinch point in the regenerator. Finally, the study investigates how different key parameters affect the performance of the combined cycle. A calculation indicates that changing the temperature and pressure of the ammonia turbine inlet increases the efficiency of the combined cycle by up to 32.75%. The maximum efficiency of the combined thermal cycle is 62.42%. For a gas turbine inlet pressure not exceeding 5 bar, a small pressure ratio improves the cycle efficiency.

Suggested Citation

  • Shen, Zhixuan & Liang, Shiqiang & Chen, Kai & Zhu, Yuming & Wang, Bo, 2024. "Analysis of cyclic thermodynamic system combining ammonia gas turbine and transcritical carbon dioxide," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016210
    DOI: 10.1016/j.apenergy.2024.124238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.