IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019758.html
   My bibliography  Save this article

Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid

Author

Listed:
  • Chen, Yubo
  • Yang, Zhao
  • Zhang, Yong
  • He, Hongxia
  • Li, Jie

Abstract

Organic Rankine cycle (ORC) is an effective way to improve energy efficiency, and 2,3,3,3-tetrafluoropropene (R1234yf) is considered as a promising working fluid for ORC. However, the development of R1234yf in ORC is limited by its flammability, and the addition of 1,1,1,2-tetrafluoroethane (R134a) is an effective method to inhibit its flammability. In this paper, the combustion and interaction mechanism of R1234yf/R134a were investigated. Firstly, the combustion products of R1234yf/R134a were measured using an improved experimental device, the results showed a substantial reduction in the concentrations of CO, CO2, and HF with an increasing proportion of R134a. Then, the combustion mechanism of R1234yf/R134a was studied by ReaxFF-MD simulation. The initial decomposition time of R134a was found to be later than that of R1234yf, and a reduction in the production rate of combustion products was achieved with the addition of R134a. Furthermore, the combustion reaction was promoted by the increase in temperature. Finally, the main reaction pathways of working fluids were analyzed. The abstraction reaction of R134a with radicals and the scavenging of active radicals by flame retardant radicals were the key to inhibit the combustion reaction. The results have universal guiding significance for the safe application of R1234yf/R134a.

Suggested Citation

  • Chen, Yubo & Yang, Zhao & Zhang, Yong & He, Hongxia & Li, Jie, 2023. "Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019758
    DOI: 10.1016/j.energy.2023.128581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    2. Ranjbar Hasani, Mohammad & Nedaei, Navid & Assareh, Ehsanolah & Alirahmi, Seyed Mojtaba, 2023. "Thermo-economic appraisal and operating fluid selection of geothermal-driven ORC configurations integrated with PEM electrolyzer," Energy, Elsevier, vol. 262(PB).
    3. Hong, Dikun & Li, Ping & Si, Ting & Guo, Xin, 2021. "ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene," Energy, Elsevier, vol. 218(C).
    4. Yang, Zhao & Wu, Xi & Tian, Tian, 2015. "Flammability of Trans-1, 3, 3, 3-tetrafluoroprop-1-ene and its binary blends," Energy, Elsevier, vol. 91(C), pages 386-392.
    5. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    6. Feng, Biao & Yang, Zhao & Zhai, Rui, 2018. "Experimental study on the influence of the flame retardants on the flammability of R1234yf," Energy, Elsevier, vol. 143(C), pages 212-218.
    7. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Esmaeilion, Farbod & Memon, Saim & Garcia, Davide Astiaso & Assad, Mamdouh El Haj, 2022. "A solar thermal driven ORC-VFR system employed in subtropical Mediterranean climatic building," Energy, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhihao & He, Guogeng & Hua, Jialiang & Hao, Zian & Ning, Qian & Zhou, Sai, 2024. "Comparison of combustion and interaction mechanisms of mixed working fluids R152a and R1270: A theoretical and experimental study," Energy, Elsevier, vol. 304(C).
    2. Zhang, Yong & Yang, Zhao & Chen, Yubo & He, Hongxia, 2024. "A new method for predicting minimum ignition energy of environmentally friendly working fluids based on microscopic molecular structure," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    2. Chen, Yubo & Yang, Zhao & Lv, Zijian & Zhang, Yong & Li, Jie & Fei, Teng, 2023. "Combustion mechanism and product characteristics of 2,3,3,3-tetrafluoropropene as an environmentally friendly working fluid for organic Rankine cycle," Energy, Elsevier, vol. 268(C).
    3. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    4. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    5. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
    6. Zhai, Rui & Yang, Zhao & Chen, Yubo & Feng, Biao & Lv, Zijian & Zhao, Wenzhong, 2019. "Theoretical and experimental studies on the combustion mechanism of Trans-1, 3, 3, 3-tetrafluoroprop-1-ene," Energy, Elsevier, vol. 189(C).
    7. Xin, Liyong & Liu, Chao & Tan, Luxi & Xu, Xiaoxiao & Li, Qibin & Huo, Erguang & Sun, Kuan, 2021. "Thermal stability and pyrolysis products of HFO-1234yf as an environment-friendly working fluid for Organic Rankine Cycle," Energy, Elsevier, vol. 228(C).
    8. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    9. Menaz Ahamed & Apostolos Pesyridis & Jabraeil Ahbabi Saray & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Srithar Rajoo, 2023. "Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines," Energies, MDPI, vol. 16(11), pages 1-21, May.
    10. Feng, Biao & Yang, Zhao & Zhai, Rui, 2017. "Experimental research on the concentration characteristics of R32 and R161′ combustion product HF," Energy, Elsevier, vol. 125(C), pages 671-680.
    11. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    12. Zahra Amiri & Arash Heidari & Mehdi Darbandi & Yalda Yazdani & Nima Jafari Navimipour & Mansour Esmaeilpour & Farshid Sheykhi & Mehmet Unal, 2023. "The Personal Health Applications of Machine Learning Techniques in the Internet of Behaviors," Sustainability, MDPI, vol. 15(16), pages 1-41, August.
    13. Dennis K. Kim & Peter B. Sunderland, 2020. "Viability of Various Sources to Ignite A2L Refrigerants," Energies, MDPI, vol. 14(1), pages 1-10, December.
    14. Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).
    15. Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Ouyang, Tiancheng & Wang, Zhiping & Wang, Geng & Zhao, Zhongkai & Xie, Shutao & Li, Xiaoqing, 2021. "Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine," Energy, Elsevier, vol. 236(C).
    17. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Feng, Yong-qiang & Xu, Jing-wei & He, Zhi-xia & Hung, Tzu-Chen & Shao, Meng & Zhang, Fei-yang, 2022. "Numerical simulation and optimal design of scroll expander applied in a small-scale organic rankine cycle," Energy, Elsevier, vol. 260(C).
    19. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    20. Choi, Byung Chul & Park, June Sung & Ghoniem, Ahmed F., 2016. "Characteristics of outwardly propagating spherical flames of R134a(C2H2F4)/CH4/O2/N2 mixtures in a constant volume combustion chamber," Energy, Elsevier, vol. 95(C), pages 517-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.