IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp282-301.html
   My bibliography  Save this article

OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform

Author

Listed:
  • Wang, Lu
  • Robertson, Amy
  • Jonkman, Jason
  • Yu, Yi-Hsiang

Abstract

In the OC5 and OC62 projects, the authors observed a persistent underprediction of the nonlinear, low-frequency responses of an offshore wind semisubmersible with many mid-fidelity engineering models, including the OpenFAST tool developed by the National Renewable Energy Laboratory. Both the low-frequency wave excitation in surge and pitch and the resulting resonance motions were severely underpredicted. In response, we developed several modifications to the OpenFAST model from the OC5/6 projects to improve the predictions of the low-frequency wave loads and responses. All modifications are in the modeling of the viscous drag forces. Efforts were made to provide physical justifications to the changes and to limit the number of additional parameters requiring tuning, so that the modified model can be applied to other floating wind systems. With the proposed modifications, the predictions of the low-frequency surge and pitch wave loads on a fixed floater and the resonance responses of a floating structure are both significantly improved with a single set of model coefficients, which leads to good agreement with the measurements from the OC6 wave-basin experimental campaign.

Suggested Citation

  • Wang, Lu & Robertson, Amy & Jonkman, Jason & Yu, Yi-Hsiang, 2022. "OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform," Renewable Energy, Elsevier, vol. 187(C), pages 282-301.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:282-301
    DOI: 10.1016/j.renene.2022.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Son, Daewoong & Belissen, Valentin & Yeung, Ronald W., 2016. "Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor," Renewable Energy, Elsevier, vol. 92(C), pages 192-201.
    2. Li, Haoran & Bachynski, Erin E., 2021. "Experimental and numerical investigation of nonlinear diffraction wave loads on a semi-submersible wind turbine," Renewable Energy, Elsevier, vol. 171(C), pages 709-727.
    3. Simos, Alexandre N. & Ruggeri, Felipe & Watai, Rafael A. & Souto-Iglesias, Antonio & Lopez-Pavon, Carlos, 2018. "Slow-drift of a floating wind turbine: An assessment of frequency-domain methods based on model tests," Renewable Energy, Elsevier, vol. 116(PA), pages 133-154.
    4. Amy Robertson & Lu Wang, 2021. "OC6 Phase Ib: Floating Wind Component Experiment for Difference-Frequency Hydrodynamic Load Validation," Energies, MDPI, vol. 14(19), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patryniak, Katarzyna & Collu, Maurizio & Coraddu, Andrea, 2023. "Rigid body dynamic response of a floating offshore wind turbine to waves: Identification of the instantaneous centre of rotation through analytical and numerical analyses," Renewable Energy, Elsevier, vol. 218(C).
    2. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Lu Wang & Amy Robertson & Jason Jonkman & Yi-Hsiang Yu, 2020. "Uncertainty Assessment of CFD Investigation of the Nonlinear Difference-Frequency Wave Loads on a Semisubmersible FOWT Platform," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    3. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    4. Li, Demin & Sharma, Sanjay & Borthwick, Alistair G.L. & Huang, Heao & Dong, Xiaochen & Li, Yanni & Shi, Hongda, 2023. "Experimental study of a floating two-body wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    5. Conghuan Le & Yane Li & Hongyan Ding, 2019. "Study on the Coupled Dynamic Responses of a Submerged Floating Wind Turbine under Different Mooring Conditions," Energies, MDPI, vol. 12(3), pages 1-21, January.
    6. Amy Robertson & Lu Wang, 2021. "OC6 Phase Ib: Floating Wind Component Experiment for Difference-Frequency Hydrodynamic Load Validation," Energies, MDPI, vol. 14(19), pages 1-26, October.
    7. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    8. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
    9. Al Shami, Elie & Wang, Xu & Zhang, Ran & Zuo, Lei, 2019. "A parameter study and optimization of two body wave energy converters," Renewable Energy, Elsevier, vol. 131(C), pages 1-13.
    10. Shadman, Milad & Estefen, Segen F. & Rodriguez, Claudio A. & Nogueira, Izabel C.M., 2018. "A geometrical optimization method applied to a heaving point absorber wave energy converter," Renewable Energy, Elsevier, vol. 115(C), pages 533-546.
    11. Son, Daewoong & Yeung, Ronald W., 2017. "Real-time implementation and validation of optimal damping control for a permanent-magnet linear generator in wave energy extraction," Applied Energy, Elsevier, vol. 208(C), pages 571-579.
    12. Rodríguez, Claudio A. & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2019. "Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach," Energy, Elsevier, vol. 169(C), pages 1022-1038.
    13. Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
    14. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    15. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    16. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    17. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    18. Chen, Zhongfei & Zhang, Liang & Yeung, Ronald W., 2019. "Analysis and optimization of a Dual Mass-Spring-Damper (DMSD) wave-energy convertor with variable resonance capability," Renewable Energy, Elsevier, vol. 131(C), pages 1060-1072.
    19. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    20. Jin, Peng & Zhou, Binzhen & Göteman, Malin & Chen, Zhongfei & Zhang, Liang, 2019. "Performance optimization of a coaxial-cylinder wave energy converter," Energy, Elsevier, vol. 174(C), pages 450-459.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:282-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.